acontis

technologies

acontis technologies GmbH

SOFTWARE

RTOS Virtual Machine

User Manual
Edition: 2024-10-10

1 of 205

Content

1 ACONTIS RTOS VIRTUAL MACHINE OVERVIEW ...ttt 5
1.1 SHARED MODE OPERATION ...uiiiiiiiiiittttittieeeseiitbtetseessesabbasssesssssisbbbstsesessssasbbbsesseesssssbbbaaseesesssasbbaassesessiases 5
1.2 EXCLUSIVE MODE OPERATIONoittttiitieeiiiiittttetieesseiisbastsesssssisbasssesesssssssssessessssssssbasssesssssssssrssseesessssns 6

2 VIRTUAL MACHINE FRAMEWORKootiiiiiiee ettt ettt sve st sate e stte e sate e stveeenne e e 7

2. 011 VM ATCRITEOIUIEviie ittt et e et e sttt e e s ettt e e s st e e e e sbb e e s ssbbaesssbeeeessbbeeesssbeneeins 8
2.1.2 Basic VMF Services (Hardware ADStraction LAYEr)........cccoeiieireiiiinieiiiencesie e 9
A =10 =3 - =Y | I 2T 10
2.3 VIMF MANAGEMENT ANCHOR......ciitttteeittteeiitteeesistteesssseeeesesaesesssbesesassesssassassssbesesassbesssssessssssbessssssensesns 10
AV 1=V [0 =2 YN 70 1 RS 11
2.5 THE RTOS LIBRARY .ooiiiitiiiiiittite s itttee e ettt e e sittte e s stbteessbatsssebaesesssbeeesabbeessasbasessabeeesaabbesesssaeesssbeeesassbenesns 12

3 REAL-TIME DEVICE MANAGEMENT ..ottt ettt eatae s s e s srae s nes 13
B A @ AV = =V | Y R 13
3.2 ASSIGNADEVICETOARTOS ..ottt e e ettt e e e s s b e e e st e e e s eaaee e e s sbbeeessabeeeeans 14

3.2.1 USING SYSLEM IMANAGET -.....ee ettt sttt ettt et b e bbbttt b bbb b st et r bt b 14
3.2.2 Using RtosUpload.exe or RtOSLID AP ...t 15
3.3 INTERRUPT SHARING CONFLICTS .oiiiiiiitttiiieieesiiittttiesseesssssssbtsssesssssiasbbssssssssssasbbatessssssssbrssssssssssassrrrssseess 16
BBl PIINCIPIE bbbttt b et b et b 16
3.3.2 Understanding interrupt CONFIICESoveiiiiiiiiiicee e 16
3.3.3 Resolving INterrupt CONTHCESccveiiieice e 18
K 010] N =l [T 3y [0 N SRS 19
TR R o (0] o T TS [=1 (oo SR 19
3.4.2 RtosUpload.eXe / RIOSLID APL.......ccvoiieiie ettt re e nne e 21
R T V1Y 0 To (oL VL i 1 =T 21
T S S 1@ RN oo 1T 11 S S 27
R I B 21V == 3] 1111 T 28
3.5.1 Driver Package SIgNINGc.coeiirieiiiiieiie ettt 28
3.5.2 Certificate Pre-InStallationoocveiiiiciiii ettt ettt st e e s e e e st e e e s ete e e e s erbee s 30

4 RTOS OPERATION MODEoi oottt e ettt be s s be s s be e s abe s s be e s sbaesbeeeteas 32
4.1 SHARED MODE OPERATION (SINGLE CORE)cuvtutititinieuisteteststestesesiesiesesiesbese bbb sne b sne s sne s 33
4.2 SHARED MODE OPERATION (MULTI CORE)......tttutititeniesestetesessestesestestesessesbesessesbenessessessssessessssessessasessens 34
4.3 EXCLUSIVE IMODE OPERATION L.uttttiiiieeiiiittttietteesiiisssseseesssssisssssssssssisisssssessssssimssssssssssssmissssssseesssninsmsens 35
4.4 SMP EXCLUSIVE MODE OPERATION......iitttttttteeiiiiittttetteesssiitbssteessssssitssssessssssssssssessssssssissssssesssssissssses 36
4.5 SMP SHARED IMODE OPERATIONciiiiiiiitttttetteetiiiittrteteeessssiisbsssesssessiisbrssesssessisssssesseessssisrssssesssssisssreses 37

5 RTOS VM CONFIGURATION FILES (*.CONFIG FILES) ...ccovciieiiii e 38
5.1 PROCESSOR CONFIGURATION (RTOS) .. .iiiiiiiiieiiiie ettt ettt te e ettt nneene e s e s 38
5.2 INTERRUPT PROCESSOR VECTOR RANGEScccittiiiiii ittt e e sttt e e e e stbba it e e e s e s ebbbaae e s e e s s ssabbbaaaeeeaas 39
5.3 MEMORY CONFIGURATIONuuviieiitieeeeitteeeeiteeeseteeeeaetaesesesteeessbeeesaasseesaasasessasseseaasseseeassseeesassesesaseeeeans 40

5.3.1 Advantages and disadvantages of different OS memory reservation methods.............c.ccocvvevrrnens 41
5.4 TIME/DATE AND TIMEZONE SYNCHRONIZATIONceceiriiueeireeeiteeeiseeesseesseesssesessesssssssssssssssssssessssessneeas 42
Lo R V1Y 10 To [0 11RO 43
LI = 1O 1 43
LG AT 0 To (o1 sy A = O R 43
LTS =Tom 10 N Y= ST 44
L SIS =Tox o N 1110 Y o SRS 46
5.7 MULTI PURPOSE SHARED IMEMORYuuttiiiiiiiiiiiiiiiiiee e seiiittete e e s s ssiabbbsseeesssssabbbasesssesssbbbasesessssssssrbsnseeesns 48
R I O Y 00] Y Y (U] N1 o7 [0 N OSSP 49
TR R 1= 1 o TS 49
5.8.2 Enable/ Disable COmMM INTEITUPEcovoiiiiiiiieicee e 50
5.9 RESOURCE DESCRIPTOR TECHNOLOGY (RDT)ciitiiiiiiiiiiiisiiniiisiesteeeie sttt 51
5.10 VIRTUALIZATION TECHNOLOGY (WT) tttiitiitiiieiiite ettt sttt sttt st sttt nn e sbenne e ane e 52

6 START/STOP THE RTOS: UPLOADER UTILITY .ottt sttt s 53
(20 R N =10 0 10 Lo T R 53
6.2 UPLOADER OPERATION, COMMAND LINE OPTIONSccuutiitereiteeeitereiseeesseeessessssesessesssssssssessssessssessssnsssseeas 54

7 RTOS TRAY-ICON APPLICATION (RTOSCONTROL.EXE).....ccooiiiiiieieiinieeieee s 56

8 THE RTOS SERVICE APPLICATION (RTOSSERVICE.EXE)ccoiiiiiiiieiineeieiee e 57
< 70 R O W To! 00 =1 =] =l o 1 (] TR 57
8.2 DATE AND TIME SYNCHRONIZATION L..uutttiiiieeiiiittitieteesssiiisstistsesssssisssssesssssssssssssessssssssisssssssssssssssssssseeess 57
8.3 RTOS FILE SERVER FOR RTOSFILE SUPPORTuutttiiiiiiiiiiiiiiiieeessesiiibieieesssssisbraseessesssssbasssssessssssssssssesns 57
T = WO R € 1 5111Y 7N 2T 57

9 THE REALTIME OS VIRTUAL NETWORK ADAPTER (RTOSVNET.SYS) ..cccoeieerevenrinenens 59
LS TR 10 N = [T =y T N TR 59

10.10.2024 Page 2/205

011 WINOOWS ...ttt ettt ettt b bt a e e b ek e bt b £ e b £ e R e e R e e b ekt ebeeb e e be e bt e s e e b e besbenbesneeneas 59
0.1.2 RTOS ittt ettt bbb R b e R R e R R e R R e Rt b et R bt be bt b bt ne et 61
10 THE RTOS LIBRARY ..ottt etttk bbbt bbbt b et ettt 62
10.1 RTOS LIBRARY — APPLICATION LAYER APoiiiiiiiiiiietsieee e 62
10.1.1 QAT TR o (0L R Vo] o] [Tor= 14 o g LS 62
10.1.2 O R 1o] o] 1 Tor= 14 o] ISP 62
10.1.3 RTOS Library — initialization and ShULdOWN.............cccoci i 63
10.14 RTOS LiDIary — BVENTS ..ot bbbt 68
10.1.5 RTOS Library — interlocked data aCCeSS..........oviviiririeiiiieiee e 73
10.1.6 RTOS Library — Shared MEMOTY.........ccciiiiiiiiieinieiese et 77
10.1.7 RTOS Library — date and time synchronization (clock synchronization)...........c.ccccooveiinenen. 82
10.1.8 RTOS Library — OS SCheAUINGcoueriiiriiiiirieeiseese e 83
10.1.9 RTOS Library — notification BVENTScooiiiiiiiirecse e 84
10.1.10 RTOS Library — Uploader APL..........ooi ittt 88
10.1.11 RTOS Library — reSUIt VAIUB..........ccveieieiiie et st 95
10.1.12 RTOS Library — HCeNSINGcccviieieieie ettt sttt e et sreereane e 97
10.1.13 RTOS LIBrary — file SEIVEL ...cuvcieieece ettt 98
10.1.14 RTOS LIBrary — fileS.....civiieiecieie sttt sttt a ettt snesreene e 99
10.1.15 RTOS Library — files advanCed (6.1)cccuiveveierieieresieseeiee e sees e stese e sre e see e sre e snaens 114
10.1.16 RTOS Library — generic object fUNCLIONScoiiiiiiiii e 128
10.1.17 RTOS Library — message queue fUNCLIONS...........cociiiiiiriiiseecseeseee e 132
10.1.18 RTOS Library — pipe fUNCLIONS ..o 135
10.1.19 RTOS Library — SOCKEt fFUNCLIONS.........cociiiiiiiiiiiciiree s 138
10.1.20 RTOS Library — device fUNCLIONS. ..o s 146
10.1.21 RTOS Library — memory reservation funCtionS............ccccoevvviiiiieiiescc e 150
10.1.22 RTOS Library — virtual I/O (VIO) fUNCLIONS........coiieie e 151
10.2 RTOS LIBRARY EXAMPLE APPLICATIONSc.ttiiteeiteesteareairessresseesseesseesressessnessesssessressneasseensessnesseenes 152
10.3 RTOS LIBRARY — COMPATIBILITY ISSUES FOR VXWIN AND CEWIN 3.5 ..o 153
10.3.1 CompPatiDIlIty MOAEeovieiece e et e et e st e ra e reenreeneeas 153
10.3.2 INTEALIZALION ...ttt bbb b 153
10.3.3 Time/date and timezone SYNChronization.............cocciereiiinciin e, 153
10.34 FUNCLION SEOULPULSIIEAIM ..ottt b e e eb e 153
S R I 01 = 1 1N SRR 154
111 EC-MASTER (MAGC-ID) ..ottt et eb bbbt sb et bbb nnes 154
11.1.1 LC =T T - ST 154
11.1.2 REQUITEA STEPS ..ttt bbbt bbbt b bbbt 154
11.2 CODEIMETER. ...ttt ettt sttt ettt ekttt h bt ettt ekt b e bt e bt ekt e s bt e b et e b e e e bt e bt e bt ean e ebbeeb e e nbeebeenneanne s 155
11.2.1 USB OF VIrtUal DONGIE........coeeieeece et are e 155
11.2.2 USB dongle already containing @ LICENSE........cccvciuiiiieiie et 155
11.2.3 USB dongle not yet containing @ LICENSEccuveiviiieiie et 155
11.2.4 VAU LI o] To] TP 158
11.25 UPAALE @ TICENSE ...ttt bbbt bbbt b bt 161
11.2.6 SNAIING @ LICENSE ...ttt bbbt bbbt 164
11.2.7 TrOUDIESNOOTING. ...ttt bbbttt e 165
12 RTOSWIN OEM BRANDING. ..ottt ettt et s e st e e s e e e saee e sraaesneeeanaeesnaeeanes 166
121 L= = TSRS 166
12.2 MODULE SPECIFIC BRANDING.......ciitiiitteatieatee ettt astee e it asteessteeesteessbeeasbeesssseesbseesbseesbneesbneessneessneens 166
12.2.1 LR T01] B VN PSPPI 166
12.2.2 RtosVnet.sys and RTOS XXX.NT......coiiiiiic e 166
12.2.3 REOS S VICE.BXE ...ttt bbbttt sb bbbt h e et b bbb ns 166
1224 REOSCONIIOLEXE ...ttt bbbt bbb bbb sneens 167
12.25 UploadRtos.exe (RTE <=4.x) or RtosUpload.exe (RTE >=5.X)ccceccevverveiviieiie e 167
12.2.6 REOS P IS S, ettt bbbt h bbbttt b b e bbbt nr e e 167
13 WINDOWS UPDATE CONSIDERATIONS. ..ottt sttt nae e 168
14 APPENDIX A - PLATFORMS AND PERFORMANCE........ccccc ittt 173
14.1 REAL TIME BEHAVIOR AND THE RTOS-VIM ...ttt 173
14.2 PLATFORM EVALUATIONutiiiiteitit ettt ettt sit ettt sttt sabe e st e ssbe e s st e anbeessbeesnbeesbeeenbeesneas 173
14.3 INTEL(R) RESOURCE DIRECTOR TECHNOLOGY (RDT) ..c.viviiiiieiiiienieiesie et 174
1431 Cache Allocation TEChNOIOGY (CAT) ...c.uiiiiiriiieirienes et 174
14.3.2 Memory Bandwidth AHOCAtioN (MBA)c.ooiiiiiiieiiie e s 177
14.4 REDUCING DIMA LATENCY PROBLEMScuiitttiteeiteaiteate et attesseesbeesbeebesssesssesieesaeesbessseansesnsessnesneenes 178
145 CPU THROTTLING . 1ttt ettt ettt st et e bttt sttt bt sbe bt ae e s ae e sbe e sb e e bt e bt e s beeheeshe e nbe e abe e bt emneeabeabeenbeebeenbeanneas 180
1451 D] (o (o] IO TR PSSO TP TP 180
145.2 HOW 0 diSADIE.......eee bbb 181
10.10.2024 Page 3/205

14.6 SYSTEM MANAGEMENT INTERRUPT (SIMI) ..ottt 182

14.6.1 RV 182
15 APPENDIX B — TROUBLESHOOTING.......cctii ittt evaee et e s erae e e nees 183
15.1 = U = 183
15.2 R Y 1= Ym0 =3 N =10 T 184
15.3 COMMON STARTUP PROBLEMS.....veiiiittiieiiteieeitteeesssteeesssseessssssesesssbesssssesssssssesssssbessssssssssssssesssssseenes 185
15.3.1 IRQ sharing With Windows (L0AD)........ceeiuerierieririesesteseeeesie e siesre e e sa e e e sreseesneeraeneens 185
15.3.2 Error opening inClude file (107C) ..ot 186
15.3.3 Configured RTE memory range not available ..., 186
1534 Invalid memory configuration (L0AZ)cociiiereiiieniet e 186
15.4 WWINDOWS CLOCK DELAY . ..ttttiiiiee i ieiittiit e s ettt e e s s et a et s e e e s e eabb b a s s e e e s s s bbb b e e e e sesssabbbabaeaeesssasbbenes 187
155 WINDOWS NETWORK STACK ..vttiiiiiiiiiiittiit i e e s ettt s e e s s e sttt st s e s s s s siabbbeasesssssabbbaasessssssabbbaaeeessssssarenes 187
15.6 NETWORK SHARE ACCESSoiiuttttiiieeisiiitiitiiesesssesatttessessssssbastsssesssasiabbasssssssssibbasssessssssssbbrtesssesssases 188
15.7 LY 1= = 2 =10 = N[0 R 189
15.7.1 Setting a dedicated frEQUENCYcvcieiie e 189
15.7.2 FreqUENCY MEASUIE BITON .. .veiiiiieiiiee ittt site ettt ettt sbe e st e st e st e st e e s beesnbeessbeeanbeeebeas 189
15.8 IR A Y= I 1 =N 2 190
15.9 RTOSLIB EVENT / MSGQUEUE / PIPE / SOCKET PERFORMANCEciviiitiitiitieiteeiteeireeereeereeresnnesnee s 190
15.10 USING RTOSVM INSIDE A HYPERVISORccouviieiitrieeiitteee s iteeeesetttessestessssbaeessssbasssssbanesssssessssssensesns 190
15.11 REASONS FOR REQUIRED REBOOTS.....cciiutiieiiiieeeiitteeeeitteeeesitreeeastteeessteeessasaeaeaasteesssssssesissesesassseesans 190
16 APPENDIX C — INSTALLATION ...ttt ettt e ettt e e sttt e s ettt s e st e e e s st e e e s sbaaaeseaees 191
16.1 OEM INSTALLATION oitiitiitttttie e e e s set ettt s e e st ettt a et s e e s s asabb b e et s e eessssabbbeaeaeesssesbabbeeeeesssaabbbeeeseessssassrenes 191
16.1.1 COAEMELEr USEI RUNTIME ...ttt ettt e e e s st e e sttt e e s st e e e s sbaneesabeeesssreeeeens 191
16.1.2 REE RUNTIMIE. ...ttt ettt ettt e s ettt e e s et et e e sab b e e s sabbeeesaabeeessabeeessareeeesnees 191
16.2 IMANUAL INSTALLATION ...ttt tttiittttteeeeesiiittrtieeeeessiitbbssessesssssbabasssessssasabbaesessssssibbbsssesessssabbraesssesssnses 193
16.2.1 R L T LSO N B \Y/=] T 194
16.2.2 Realtime OS Virtual NETWOIK DIIVELccviiiiiiiie ettt et 196
16.2.3 [(0T Lo Al] =T 198
16.2.4 DEBUG CONSOIE ...ttt et et e et esbe e be e te e aeanaesneenreennas 201
16.2.5 L3 1111 To OO PP PP 201
16.2.6 CodeMeter RUNTIME ENVIFONMENToovvieiiciiee ettt ettt e st e e s ten e s svar e e s sbe e e s snaeeeens 201
16.2.7 FArst STArt OF QN OS ...oeeiiiiiiie ettt e et e st e e s sttt e e s s b et e e s b b e e e sabbeeessbereessrrenas 202
16.2.8 Product specific additioNals SIEPScviiriiiiiieee e 204
A V4 o =] [0\ o 1 IS IO 2R 205

10.10.2024 Page 4/205

1 ACONTIS RTOS Virtual Machine Overview

The ACONTIS RTOS-VM provides a light-weight real-time virtualization platform for Windows.
On top of this platform either real-time firmware, custom or off-the-shelf real-time operating systems

can be executed.
When using multicore CPUs one can choose between two general operation modes. A more detailed
description about possible operation modes can also be found in section 4.

1.1 Shared Mode Operation

Windows shall run on all CPU cores and only one CPU core shall additionally run the real-time
software. If the Windows application needs a lot of CPU power (e.g. for image processing) this will be
the appropriate operation mode even on multi-core CPUs. In shared mode operation Windows (on this
core) will usually only get CPU time when the real-time software is idle.

The following diagram illustrates the flow of control:

Real-time

Realtime \RQ ISR

©) Real-time

A

Tasks

Windows Priority of Execution. Real-time Software

Operating states of the RTOS-VM in shared mode
@® Exception-handling or a higher priority interrupt becomes outstanding.
@ Interrupt Service Routine optionally starts a new task and then finishes.
® From the idle-state, VxWorks transfers control to Windows operating system.

Note: When running the RTOS-VM in shared mode on multiprocessor/multicore systems this state
diagram is only applicable for one CPU core in the system (by default on the first core). All other CPU
cores will run Windows only.

10.10.2024 Page 5/205

1.2 Exclusive Mode Operation

Windows and the real-time software shall run fully independently on different CPU cores. Using this
mode will lead to much shorter interrupt and task latencies as there is no need to switch from
Windows to the real-time software.

The following diagram, illustrates the flow of control on a dual core system:

Windows Real-time
Processes Tasks

Core 1: Core 2:
Windows Real-time
Software

Operating states of the RTOS-VM in exclusive mode
@® Exception-handling or a higher priority interrupt becomes outstanding.
@ Interrupt Service Routine optionally starts a new task and then finishes.

Note: When running the RTOS-VM in exclusive mode Windows will never be interrupted. Application
and interrupt processing run concurrently and independently on both CPU cores. There is no need in
the real-time software to enter the idle state.

10.10.2024 Page 6/205

2 Virtual Machine Framework

Using the ACONTIS RTOS-VM there is no need to understand the complex hardware of modern PC
systems. The basic hardware components of the PC (architecture specific processor registers, timer,
interrupt controller, memory handling/partitioning) can be accessed in the real-time software by simply
calling the appropriate functions that the RTOS-VM hardware abstraction layer (HAL) provides.
Besides the HAL functions the RTOS-VM provides additional services, especially for communication
with Windows:

Shared Memory: Direct access to shared memory areas

Shared Events: Notification using named events

Data Access Synchronization: Interlocked Data Access

Date and Time Synchronization

Virtual Serial Channel

Network Packet Library: basic Ethernet data transfer service

RTOS configuration services (e.g. for dynamically setting the IP address of the virtual network)
The application interface between the real-time software and the RTOS-VM is called the Virtual
Machine Framework (VMF).

When calling VMF hardware functions the hardware will be directly accessed and not emulated. These
functions are called the VMF Hardware Abstraction Layer (HAL) functions.

When using a product from the RTOSWin product family calling VMF functions is normally not
necessary. Calling framework functions is done in the RTOS adaptation for the RTOS Virtual Machine
(usually the Board Support Package).

10.10.2024 Page 7/205

2.1.1 VMF Architecture

The following figure shows the general architecture of the VMF when a RTOS is embedded within
Windows. Besides the basic VMF API (the HAL) which usually is required to build a RTOS BSP
(Board Support Package) the VMF contains functions for communication between Windows and the
RTOS (e.g. shared memory, events, network packet library). On top of the network packet library a
virtual network driver can be built which will then provide a virtual network connection between
Windows and the RTOS.

Embedded Application

TCP/IP Stack

Board Support Package
RTOS-Library-
Inte:rface
RTOS Processor Virtual Network Driver Basic VME API (HAL)

Dependent Part for x86

Networl: Packet RTOS-Library B£SIC VMF
Lib ary (Communication) (Hardwire Abstraction
Layer)

VMF Binary Modtile

Sockets
OS switching
MP technolog

RTOS driver

Virtual Network driver

ared Memory, Events

Uploader DLL

- RTOS
User Application Bootloader

_ Windows J

RTOS
Image

10.10.2024 Page 8/205

2.1.2 Basic VMF Services (Hardware Abstraction Layer)

The basic VMF services provide a simple programming interface to access the otherwise complex PC
hardware.

The following figure shows in more detail the basic VMF services which usually are used within a
RTOS Board Support Package.

Board Support Package

BASIC VMF API (HAL functions)

VMF Binary Module

Memory Multi-Core Device Interrupt Timer
Management Management Management Manage- Management
for SMP and AMP ment
Partitioning, systems System Auxiliary
Shared Memory Timer Timer
Enter RTOS:
Boot, Interrupt

Leave RTOS:
(Shared Core only)
Idle, Force Idle

Memory (RAM) Cores, Devices Interrupt Y Timer Hardware
Processor(s) Controller (e.g. 8254)

PCI/PCle/Legacy PIC
APIC/IOAPIC(S)

When adapting a RTOS to run with the ACONTIS RTOS-VM there is no need to directly access PC
hardware like timers or interrupt controllers.
The VMF as well provides a generic method for booting the RTOS and for setting up the RTOS
memory context (virtual memory).
When running on multi-core systems the VMF also provides methods for executing a RTOS which
supports Symmetric Multiprocessing (SMP).
Summarized, using the VMF one gets the following advantages:

e Fully virtualized hardware access (via Hardware Abstraction Layer functions). No need to

understand the complex PC hardware.
e Either run the RTOS and Windows together on one single core or use dedicated cores
exclusively for each operating system.
e The same RTOS image can be run either on a shared or a non-shared CPU core.
e Sophisticated Multi Core Support
o Runthe RTOS on one single or on multiple cores (SMP)
o ARTOS can run in SMP mode even on dual core CPUs

10.10.2024 Page 9/205

2.2 Portability

When using standard frameworks or libraries the customer usually gets either source-code which in a
first step would have to be ported to his specific environment (operating system, compiler, linker).

In cases where the supplier of such a framework/library does not want to ship the source-code the
customer would have to wait until a version for the framework/library is available for his environment.
To avoid these implications the ACONTIS VMF is not shipped as a library or source code but as a
relocatable binary module. This binary module will be loaded by the ACONTIS RTOS-VM at an
arbitrary location in the memory (the VMF code can be executed at any location in memory!).

Every call to a VMF function will then be redirected via well-known locations inside a jump table, this
jump table is stored at a well-defined location inside the binary module.

Thus, there is no need to port one single line of C language or assembly language code (and no need
to add the VMF as an additional library to the customer’s environment).

The only requirement is to include one single header file. Within this header file the VMF functions are
simply defined as macros which call the appropriate functions using the function pointer in the jump
table.

VMF Binary Module (relocatable)

Pointer to Function 1

Pointer to Function 2

Pointer to Function n

Function 1

Function 2

Function 3

Summarized, using the VMF binary module leads to the following advantages:
¢ No porting necessatry, just include a C header file.
¢ No change necessary in the system software when new VMF versions are released (just
exchange the binary module by the new one).
e The same binary VMF module will be used together with different RTOSes; this ensures a
higher quality than if the VMF code would have been ported individually for any RTOS.

2.3 VMF management anchor

Some information about the VMF is needed within the RTOS, e.g. the physical base address of the
framework binary image. This data is located at a specific location inside the RTOS memory.

After loading the RTOS image into the memory the uploader will copy the VMF management data at
the appropriate location inside the RTOS memory

10.10.2024 Page 10/205

2.4 Memory Layout
VMF = Virtual Machine Framework

RTOS Framework = RTOS interface (VMF interface functions)

Windows

Multi Purpose Shared
Memories

[SharedMemory\...]
"Size"=dword:...

Virtual network adapter
RtosVnet

Framework, vmf.bin
(VMF binary image)

RTOS memory

Multi purpose
Shared memory

1 - The RTOS memory area (orange) will not be used by
Windows

2 — The Uploader (RTOS Bootloader) copies the VMF
binary image (Framework) file vmfbin into an area
allocated by Windows (blue). The RTOS image is copied
into the RTOS memory (orange).

3 — At a specific location in the RTOS area (the anchor,
G_oVmfFmwkAnchor) some basic VMF information is
located, among other information the uploader will store
the physical base address of the VMF image here.

4 — After loading the RTOS image into memory the
uploader will enter the RTOS boot entrypoint.

5 — The RTOS kernel will then boot. All memory areas
needed by the VMF (Internal / User Shm, virtual network,
LocalAPIC, 10APICs etc.) will have to be mapped by the
RTOS.

RTOS 2
(QNX)

EntryPoint
G_oVmfFmwkAnchor

RTOS 1
(Windows CE)

EntryPoint
G_oVmfFmwkAnchor

RTOS 0
(VxWorks)

EntryPoint
G_oVmfFmwkAnchor

Uploader/RtosDrv

10.10.2024

[Rtos2]

RtosMemorySize
RtosEntryPointOffset
RteFmwkAnchorOffset
RtosMemoryStartAddress

[Rtos1]

RtosMemorySize
RtosEntryPointOffset
RteFmwkAnchorOffset
RtosMemoryStartAddress

[Rtos]

RtosMemorySize
RtosEntryPointOffset
RteFmwkAnchorOffset
RtosMemoryStartAddress

[Upload]
RteMemorySize
RteMemoryStartAddress

Page 11/205

2.5 The RTOS Library

VMF communication service functions (e.g. for shared events) only provide basic services without any
synchronization, some of them also have to be called within a well-defined memory context (ring 0
context, kernel context).

The Windows/RTOS communication services are therefore summarized within the RTOS library which
is based on VMF services. This library is split into two parts, an OS independent part and an OS
dependent part.

Synchronization (e.g. interrupt locking or mutexes) are part of the OS dependent part.

A detailed description of the RTOS library can be found in chapter 9.

10.10.2024 Page 12/205

3 Real-time Device Management

3.1 Overview

To achieve real-time behaviour the RTOS will have to directly access its hardware devices. In fact,
hardware devices are never emulated, neither in Windows nor in the RTOS. Every specific device,
e.g. a PCI network adapter card will, then either be used by Windows or by the RTOS exclusively.

In Windows all hardware devices which shall be used by the RTOS have to be managed by the
generic Windows RtosPnp driver shipped with the ACONTIS RTOS-VM. It will forward all required
information to RTOS.

In RTOS a device specific driver will be required.

Within the Windows Device Manager all RTOS devices will then appear in the “Realtime OS Devices’
tree:

-i0x]

File Action Yiew Help

0 B HS R A xRE

=2 TP34B
g ¢ Computer

“ g ACPI Multiprocessor PC
o Disk drives
-# Display adapters
d’ DVD/CD-ROM drives
=) Floppy disk controllers
=) IDE ATAJATAPI controllers
& IEEE 1394 Bus host controllers
“» Keyboards
J Mice and other pointing devices
-% Monitors
-H8 Network adapters
Processors
Realtime OS Devices
RTOS Parallel port (LPT1)
RTOS PROJ100 compatible PCI card
RTOS Serial port (COM1)
Sound, video and game controllers

- ¢ System devices
- Universal Serial Bus controllers

For the RTOS the Virtual Machine Framework (VMF) provides several methods to detect whether a
device is assigned and usable or not:

- vmfldGetByName(szDeviceName, VMF_ID_DEVICE, ...) : search by Name

- vmfDevicePcilsForRtos(nBus, nDevice, nFunction, ...) : search by PCI address
- vmfDevicelolsForRtos(dwloPort, ...) : search by I0-Port
Older methods:

- vmfDevicelsForRtos(szDeviceName, ...) : search by Name

- vmfDevicelnterruptidFromName(szDeviceName, ...) : search by Name

More information about these functions can be found in the VMF documentation.

Usually the RTOS adaptation (e.g. the Board Support Package) for the RTOS-VM uses these
functions internally. A RTOS user application normally doesn’t need to call these functions. More
information can be found in the corresponding documentation (e.g. in the VxWin, CeWin, QWin or
Rtos32Win/RtVmf documentation).

10.10.2024 Page 13/205

3.2 Assign adeviceto a RTOS

3.2.1 Using System Manager
. * System Manager (=2 ECR ===

Fle View Tools Run Help
-)
TL vV = QO e

4 [0 My Computer
4 [0 Global Settings

Intel(R) PRO/100 S Server Adapter

i Intel(R) PRO/L00 § Server Adapter
CPU Assignment Vendorld 8086 Deviceld 1220 (Bus0B Dev07 Fct00)
#" Realtime Optimizations Interrupt is enabled (21) E
4 | Devices

N Display adapters <+ Assign to RTOS (Legacy Interrupt Enabled)

% IDE ATA/ATAPI controllers
4 B¢ Network adapters
& Broadcom NetXtreme Gigabit Ethernet = =
. Tntel(R) PRO/L00 § Server Adapter I <~ Assign to RTOS (Interrupt Disabled) ‘
o Ports (COM & LPT)

& System devices

I + Assign to RTOS (MSI Enabled) | Assign device to R’

= Universal Serial Bus controllers I Properties ‘ Please Wait
[RTOS Files [
[Memory Areas Legacy Interrupt Usage Table Updating Driver. Please Wait...
[RTOS #1 (MiniRtos) .
L m »
Show All Devices | ©RTOSStopped | | Workspace C:\Program Files\acontis technologies\mWiny

The System Manager can be used to assign a device to a RTOS.
There are three different types of assignment:

1) “Legacy Interrupt Enabled”
The device will be configured to use a physical interrupt line.
Advantage:
- No PCI bus access required to enable or disable the interrupt
Disadvantage:
- Interrupt conflicts when another card uses the same interrupt line.

2) “MSI Enabled”
This option can be used for PCle cards supporting Message Signalled Interrupts.
Advantage:
- No interrupt conflicts
Disadvantage:
- Enabling or disabling the interrupt requires PCI bus access.

3) “Interrupt Disabled”
This option can only be used in combination with a specialized driver supporting polling mode.
The acontis EC-Master Link Layers for example are such.
Any regular network driver instead will always require an interrupt to work.
Advantage:
- No interrupt conflicts and no PCI bus access
Disadvantage:
- Special driver required

I3 Windows Security @

@ Windows can't verify the publisher of this driver software

2 Don'tinstall this driver software Reboot Needed (=23

You should check your manufacturer's website for updated driver software
for your device,

Please reboot your system to finish installation
& Install this driver software anyway % After reboot, please start System Manager again and reassign your

- . . device to the Realtime 05!

Only install driver software obtained from yeur manufacturer's website or - M —_—
L . 7 Your device should be shown below "Unknown Devices'

disc. Unsigned software from other sources may harm your computer or steal

information.

v | See details

When assigning a device to RTOS it is possible Windows asks how to continue.
Please select “Install this driver software anyway” to continue.

Such a message can be prevented by providing a signed driver package, as described in chapter “3.5
Driver Signing”.

10.10.2024 Page 14/205

In case a reboot is required please reboot the system to continue.

- Sytem Monoger |

File View Tools PRun Help

X vV m O Vs

4 [0 My Computer
4 [0 Global Settings
CPU Assignment
Realtime Optimizations
4 [T Devices
&y Display adapters
& IDE ATA/ATAPI controllers
4 & Network adapters
& Broadcom MNetXtreme Gigabit Ethernet
wr Ports (COM & LPT)
& System devices

Devices
Assign Hardware to the RTOS's,

== Universal Serial Bus controllers
[0 RTOS Files
[0 Memory Areas
4 [0 RTOS#1 (MiniRtos)
4 [Settings
Configuration
4 [Devices
at RTOS Intel(R) PRO/100 S Server Adapter

ow EevICes to (< orKspace SWFrogram riles’ ECDI"ItIS_tEC nologies\vm INYWorkspaces’ £
Show All Devi © RTOS Stopped Workspace C:\Program Files\acontis_technologies\VmfWin\workspaces\def.

After the device was assigned successfully it can be found below RTOS.
In case of starting the RTOS now brings up an interrupt conflict error please check chapter “3.3

Interrupt sharing conflicts” for possible solutions.

3.2.2 Using RtosUpload.exe or RtosLib API
Device assignment can also be done

- by calling RtosUpload.exe using the option “/device”
-> see chapter “6.2 Uploader operation, command line options”

- programmatically using RtosLib function “RtosDevice”
- see RtosDevice() API at chapter “10.1.20 RTOS Library — device functions”

10.10.2024 Page 15/205

3.3 Interrupt sharing conflicts

3.3.1 Principle

When a physical device shall be controlled by the RTOS it will be under direct control of the RTOS.
There is no virtualization of any physical device and no interference by the RTOS Virtual Machine.
Thus, the regular device driver provided by the RTOS can be used (e.g. a network driver, USB driver,
IEEE1394 driver, ...).
Usually the device driver will:

a) read and/or write to device memory areas

b) read and/or write to device I/O areas

¢) handle device interrupts
In case the device generates an interrupt, the driver’s interrupt handler is responsible to acknowledge
and handle the interrupt.

Important:
The same interrupt may never be used by both operating systems, Windows and the RTOS.

But why not?

Example: an Intel PRO/100 network adapter card that is using interrupt 20 shall be controlled by the
RTOS and an USB host controller device which is used by Windows is also using interrupt 20.

In that case, every time the USB host controller generates an interrupt the RTOS interrupt handler for
the Intel PRO/100 network adapter card would be called (real-time interrupts have a higher priority
than Windows interrupts). This handle is not capable to acknowledge and handle the interrupt of the
USB host controller. One could now transfer control back to Windows to let the corresponding
Windows handler process the interrupt. But in that case the real-time behaviour of the system would
be violated. So, there is no way to both share interrupts between Windows and the RTOS and
guarantee deterministic real-time behaviour for the RTOS.

3.3.2 Understanding interrupt conflicts

In order to understand and finally prevent interrupt conflicts between several PCI cards, the physical
arrangement of these cards should be carefully considered.

Each PCI board may generate up to four hardware interrupts on four physical interrupt lines (INTA,
INTB, INTC and INTD). In most IBM-compatible PCs, each of the four interrupt lines on the PCI-bus is
hard-wired to the next interrupt position, offset by one, in the neighbouring slot. This means that INTA
of slot 1 is (typically) hard wired to INTB of slot 2, and to INTC of slot 3, and to INTD of slot 4.
Repeating this pattern, it is also wired to INTA of slot 5, and so on.

Since PCI card manufacturers generally lay out their boards to assert an interrupt on just one line
(INTA), this has the affect of forcing the A-level interrupts of four adjacent cards to assert physically on
INTA, INTB, INTC and INTD. In accord with this scheme, a fifth adjacent card would also assert its
INTA on the same line as the first card. The next screenshot illustrates this principle.

Caution: Multi-function PCI boards may use more than one interrupt line.

Physical Intermpt ‘Wire

Phys. | Intem | siot1 [Slot2 [Skot3 [Shotd [Skts |
0[0«00] CHDAEC

96 (0x60) A A D C B
97 (0x61) BE 2 A D C c

98 (0x62) C C B A D C
99(0x63) #DD D C E A D

Mate: The AGP slot can registry as internal Device

But even when two PCI devices use different physical interrupt lines, they may be hard-wired together
by the PC’s interrupt router. The interrupt router maps various physical interrupt lines to the inputs of
the Programmable Interrupt Controller.

10.10.2024 Page 16/205

The inputs of the interrupt router are the physical interrupt lines (refer to screenshot). The output of the
interrupt router is connected to the interrupt controller of the PC. How many of the physical interrupt
lines will be gathered together by the interrupt router depends on both the interrupt router and the
number of free interrupts available at the Programmable Interrupt Controller.

If you desire, you can increase the number of free interrupt lines by using the BIOS to disable some
PC components: COM ports, USB controller, or Audio/Sound controller, for example.

The number of output lines the interrupt router provides depends on the PC hardware (chipset). If the
interrupt router has a small number of output lines, it is quite likely that you will discover that several
physical interrupts have been wired to a common interrupt on the controller.

Problems with sharing interrupts:

PCI devices that interrupt along the same interrupt pin route have no choice but to share an interrupt.
The routing of interrupt pins to an interrupt router is system (chipset) dependent. While in many cases,
finding and isolating the desired interrupt lines is not much of a problem, experience has nonetheless
shown that it is not at all possible in some PCs to separate the interrupt lines as required by the
RTOSWin solution.

Assume that Device A (installed under Windows) physically shares an interrupt with device B (installed
under the RTOS). If Device A generates an interrupt while the RTOS is running, how could interrupt-
handling software process the interrupt without impairing the ability of the real-time system to fulfil its
tasks within prescribed times?

One might be tempted to solve this problem in either of the following ways:

e Disable the interrupt in the interrupt controller and re-enable it only when the RTOS returns to
its idle state and returns control to Windows. Using this approach, however, interrupts
generated from device B would also be blocked for some time, a circumstance that would not
be acceptable for real-time operations.

e By implementing an appropriate RTOS interrupt handler, one could prevent Device A from
generating an interrupt until after the RTOS returned to Windows. Thereatfter, the interrupt
intended for Windows could be handled. While this theoretically could solve the dilemma,
there could be no way to handle this in a general fashion. Requiring an intelligent real-time
interrupt handler to be written for each device that shares an interrupt with a Windows device
would very likely mean that the Windows device driver (depending on the device) would have
to be modified, too. For this reason, this approach does not provide an adequate solution for
handling shared interrupts either.

The foregoing scenarios can lead to but a single conclusion: In a dual system, such as the RTOSWin
solution, Interrupt-sharing between Windows and the RTOS must be prohibited.

And that implies that PCI cards that are controlled by the RTOS may not be plugged into a PCI slot
that uses the same hard-wired interrupt line (normally INTA) as does either an external or internal
Windows device.

Conclusion: Windows devices can share Windows interrupts and RTOS devices can share RTOS
interrupts, but never can interrupts be shared across the two operating systems.

Fortunately, most of the time, system designers can eliminate interrupt conflicts.

If it were possible to identify an otherwise unused interrupt pin route to real-time devices, the RTOS
could manage multiple interrupts along that route via interrupt sharing.

Custom boards that provide a means for specifying on which of the interrupt pins — INTA#, INTB#,
INTCH#, or INTD# — the board’s interrupts should be asserted, very well suit the scheme of having
multiple-function or single-function PCI devices sharing an interrupt. Such boards allow great flexibility
in combining devices that require real-time servicing with those that do not.

10.10.2024 Page 17/205

3.3.3 Resolving interrupt conflicts

Prior to start resolving interrupt conflicts the device has to be under control of the RTOS. This has to
be done by installing the RtosPnp Device Driver (see section 3.4). This driver will request an exclusive
interrupt from the Windows Resource Manager. If no other device requests an exclusive interrupt and
if the hardware (motherboard, chipset) is also capable of providing an exclusive interrupt then a
unigue interrupt will be assigned for this device.

If this fails, there are several ways how to resolve interrupt conflicts then.
a) Try to find another slot where to insert the PCI/PCle card.
b) If capable then configure the device to use message signalled interrupt (MSI) instead (see
section 3.4.3.3)
c) Disable all unused devices in the BIOS
d) Disable the conflicting Windows device either by disabling it in the BIOS or by disabling it in
the Windows Device Manager.

In case your RTOS device driver does not use interrupts (i.e. if used polling) you may configure the
device using polling mode. This can be either done by the System Manager, RtosUpload.exe, RtosLib
RtosDevice() or by modifying the standard Windows INF file that is used to assign the device to the
RTOS. See section 3.4.3.3 for more information.

Sometimes a Windows device is assigned an interrupt but the device never generates an interrupt.
For example, in many cases the SMBus device doesn’t generate interrupts even if it is assigned one.
In that case you may also ignore interrupt conflicts. But it is also necessary to modify the standard
Windows INF file that is used to assign the device to the RTOS. See section 3.4.3.5 for more
information.

10.10.2024 Page 18/205

3.4 Configuration

3.4.1 Properties dialog

Using the Windows Device Manager, it is possible to change the device configuration parameters.
The meaning of the parameters is identical to the corresponding settings in section
[Driverinstall_HwAddRegUsrDef] in the INF file of the driver (see section 3.4.2).

RTOS PRO/100 compatible PCI card Properties ?)X)

0S Id (Default)

0S Id [Current)
Device Type [Default)
Device Type [Current]
Pci Bus |d [Default)
Pci Bus Id [Current)
Device |d [Default)
Device Id [Current]
Function |d (Default)
Function Id [Current)
PIN [Default)

PIN [Current)

Number DFf Interrupts
Interrupt Configuration

General | Rte Device Configuration | Driver | Details | Resources

Device Name I

The name of the device in the RTE.

[0K][Cancel]

Rte Device Configuration parameter Corresponding entry in [Driverinstall_HwAddRegUsrDef]
oS Id Osld

Device Type DeviceType

Pci Bus Id PciBus

Device Id PciDevice

Function Id PciFunction

PIN PciPin

10.10.2024 Page 19/205

Interrupt Source Configuration
RTOS PRO/100 compatible PCI card Properties ?)X)

| General Rte Device Configuration | Driver | Details | Resources

Type [Default] | Autodetect

Type [Current)

Trigger Mode [Default)

Trigger Mode [Current)

Polarity [Default)

Polarity [Current)

Nao Disable On Stop

Interrupt Inactive

Reagister Interrupt

Request Mode (Default)
Request Mode [Current)
Target Address Type [Default)
Target Address Type [Current)
Target Address Value [Default)
Target Address Value [Current)
Target Processor Vector [Defar
Target Processor Vector [Curre
Raw Interrupt Resources
Translated Interrupt Resources

=2

Depending on the type different parameters will be evaluated.

Apply | Cancel |

[oK][Cancel]

Rte Device Configuration parameter

Corresponding entry in [Driverinstall_HwAddRegUsrDef]

Type

InterruptType

Trigger Mode

InterruptTriggerMode

Polarity

InterruptPolarity

No Disable On Stop

InterruptDontDisableOnRtosStop

Interrupt Inactive

InterruptDoesntinterrupt

Register Interrupt

InterruptRegisterToWindows

Request Mode

InterruptRequestMode

Target Address Type

InterruptTargetAddressType

Target Address Value

InterruptTargetAddress

Target Processor Vector

InterruptProcessorVector

Raw Interrupt Resources

Windows internal information (read only)

Translated Interrupt Resources

Windows internal information (read only)

10.10.2024

Page 20/205

3.4.2 RtosUpload.exe / RtosLib API

The RtosUpload.exe option “/device” and RtosLib API “RtosDevice()” allows the modification of some
device configuration values like interrupt mode, device name and OS id using parameter
‘rte_configure’.

See RtosDevice() API at chapter “10.1.20 RTOS Library — device functions” for details

3.4.3 Windows INF file

When a device should be assigned to RTOS a Windows INF file is required to install the generic
RtosPnp driver for Windows so the device information can be forwarded to RTOS.

There are several RtosPnp INF files shipped with the product, but under some circumstances it is
required to create a new file:

- Support a new device and prevent the “Windows Security Warning” during driver installation

- An option should be changed to another default (for example always using polling mode) so
no re-configuration is required after assigning the device

After creating or modifying an INF file it must be signed to prevent the “Windows Security Warning”
during driver installation — see chapter “3.5 Driver Signing” for details.

3.4.3.1 Supporting a new device
In most cases the template INF file has only to be adjusted by a few changes.

3.4.3.1.1 Device Names
The device name has to be adjusted, optionally several additional name string may be adjusted.

Template INF file:

[Strings]

DEVICEDISPLAYNAME = "RTOS Device Name" ; (x)
DEVICECLASSNAME = "Realtime OS Devices" ;5 (0)
MFGNAME = "acontis technologies GmbH" ;5 (0)
INSTDISKNAME = "acontis technologies GmbH Installation Disc" ; (o)
SERVICEDISPLAYNAME = "RTOS PnP Driver" ; (o)
SERVICEDESCRIPTION = "RTOS PnP Driver" ;5 (0)
Example adjustments (device name and company name):

[Strings]

DEVICEDISPLAYNAME = "My PCI Card" ; (1)
DEVICECLASSNAME = "Realtime OS Devices" ;5 (0)
MFGNAME = "My Company" ; (o)
INSTDISKNAME = "My Company Installation Disc" ; (o)
SERVICEDISPLAYNAME = "RTOS PnP Driver" ;5 (0)
SERVICEDESCRIPTION = "RTOS PnP Driver" ;5 (o)

3.4.3.1.2 PCI Device ldentifications

A PCI device is uniquely identified by at least two identifiers: the Vendor ID (e.g. 8086 for Intel) and
the Device ID (e.g. 1229 for the Intel PRO/100 device).

Some PCI devices belong to a device family (for example the Intel PRO/1000 family). In this case the
same INF file may be used by several such devices.

The [DevicelList] section in the INF file contains at least entry with the appropriate vendor and device
id.

Template INF file:
[Devicelist]
$DEVICEDISPLAYNAMES = DriverInstall, PCI\VEN FFFF&DEV FFEFF ; (1)

Example adjustments (two devices with vendor id ABCD and device ids 1234 and 5678):
[DeviceList]

$SDEVICEDISPLAYNAMES = DriverInstall, PCI\VEN_ABCD&DEV_1234 ; (1)
$DEVICEDISPLAYNAMES = DriverInstall, PCI\VEN ABCD&DEV 5678 ;o(r)

10.10.2024 Page 21/205

3.4.3.2 Forcing the RtosPnp driver to be loaded — determine interrupt sharing conflicts

In case the device which shall be controlled by the RTOS (using the RtosPnp driver) shares its
interrupt with another device that is controlled by Windows two scenarios may occur:

a) The Windows Device Manager successfully loads the RtosPnp driver

b) The Windows Device Manager refuses to load the RtosPnp driver

The reason why sometimes the driver is not loaded is an entry in the INF file that forces the Windows
Resource Manager to assign a unique interrupt to the device. If Windows cannot find a unique
interrupt then it may not load the driver.

To avoid this behavior the entry in the INF file has to be changed in a way that the Windows Resource
Manager is allowed to assign an interrupt that is already used by another device.

There are several ways to change the interrupt mode to MSiI:
- By modifying the devices Windows INF file to change the installation default:

Template INF file (by default the entry is not existing which means device exclusive):

[DriverInstall HwAddRegUsrDef]

;HKR, "ConfigInterrupt0", "InterruptRequestMode", %REG_DWORD%, 0x00
(o) 00=exclusive, 0Ol=shared

Required adjustment (uncomment and set the value to 0x01):

[DriverInstall HwAddRegUsrDef]

HKR, "ConfigInterruptO", "InterruptRequestMode", $REG_DWORD%, 0x01
; (o) 00=exclusive, Ol=shared

After adjusting the INF file a driver update with the new INF file has to be executed.

- Using the Windows device manager
Select the RTOS device driver, open device properties, select the tab “Rte Device
Configuration”, select and click “Interrupt Configuration” and change “Request Mode (Default)”
from “Exclusive” to “Shared”. At last click “OK” and reboot to update the settings.

3.4.3.3 Use message signalled interrupt (MSI) to solve interrupt conflicts

If a device and the chipset are capable of using message signalled interrupts (MSls) a RTOS
controlled PCI device can be configured to use MSI instead of a line interrupt.

This solves interrupt conflicts often caused by the classic line interrupt.

The advantage of MSI instead of classic line interrupt is that it needs not to be shared with other
devices. The line interrupt is a wire connecting multiple slots on the mainboard and so the same wire
might be shared by multiple cards. MSI on the opposite uses the PCI bus address and data lines to
generate an interrupt message. The only limit for exclusivity on MSI is the number of available CPU
interrupt vectors.

In case a device is configured to use MSI but it does not support MSI an error message will be shown
as soon as the driver wants to enable the interrupt.

A device can be configured for using MSils either by modifying the inf file before the device driver
installation or by changing the device configuration using the Windows device manager after the
installation.

There are several ways to change the interrupt mode to MSI:
- Inthe System Manager device options
- By using RtosDevice() API directly or by RtosUpload.exe — see RtosDevice() API for details!
- By modifying the devices Windows INF file to change the installation default:

Template INF file:

[DriverInstall HwAddRegUsrDef]
;HKR, "ConfigInterrupt0", "InterruptType", %$REG_DWORD%, OxXFFFFFFFE

Required adjustment:
[DriverInstall HwAddRegUsrDef]
HKR, "ConfigInterruptO0", "InterruptType", $REG_DWORD%, 0x04

10.10.2024 Page 22/205

Using the Windows device manager

RTOS PRO/1000 compatible PCI card Properties [RTOS PRO/1000 compatible PCI card Properties [@

General | Rte Device Configuration | Driver | Details | Resources General | Ate Device Configuration | Driver | Details | Resources
Device Name Interrupt Configuration l Autodetect LJ
05 Id [Default) Type [Current) Autodetect
05 Id [Current) Trigger Mode (Default) Pic
Device Type [Default) Trigger Mode (Current) ladipic
Device Type [Curent) Array Index 1 j Polarity (Default) Localapis
Pci Bus Id [Default) Polarity (Current) =
Pci Bus Id [Current) No Disable On Stop MSI
Device Id [Default) Interrupt Inactive 0
Device Id [Current] Register Interrupt
Function |d [Default] Request Mode [Default)

Function |d [Current) Request Mode [Current)

PIN [Default) Target Address Type [Default)

PIN (Current) Target Address Type [Current)

hlumber Qi lnterup Target Address Yalue [Default)

|nterrupt Configuration Target Address Value [Current)
Target Processor Vector [Defar
Target Processor Yector (Curre
Raw Interrupt Resources
Translated Interrupt Resources

Each configuration in the array represents an interrupt resource. Depending on the type different parameters will be evaluated.
Apply | Cancel
[oK] [Cancel J [OK] [Cancel J

Select the RTOS device driver, open device properties, select the tab “Rte Device
Configuration”, select and click “Interrupt Configuration” and change “Type (Default)” from
“Autodetect” to “MSI”. At last click “OK” and reboot to update the settings.

3.4.3.4 RTOS controlled PCI devices not using interrupts

Sometimes the RTOS device driver that controls the PCI device does not require to handle interrupts
from this device.

In such cases it is possible that other devices which are controlled by Windows are allowed to use the
same interrupt line as the RTOS device would use — normally it is not allowed that the same interrupt
line is used by both, Windows and the RTOS (see section 3.2).

There are several ways to change the interrupt mode to polling:

In the System Manager device options
By using RtosDevice() API directly or by RtosUpload.exe — see RtosDevice() API for details!
By modifying the devices Windows INF file to change the installation default:

Template INF file:
[DriverInstall HwAddRegUsrDef]
;HKR, "ConfigInterrupt0", "InterruptDoesntlInterrupt", $REG_DWORD%, 0x00

Required adjustment:
[DriverInstall HwAddRegUsrDef]
HKR, "ConfigInterrupt0", "InterruptDoesntInterrupt", $REG_DWORD%, 0x01

After adjusting the INF file a driver update with the new INF file has to be executed (see
section 16.2.1 Realtime OS Driver).

10.10.2024 Page 23/205

3.4.3.5 RtosPnp driver Windows INF file parameters

This section describes all Windows INF file parameters of the RtosPnp driver that can be adjusted to
fit to specific requirements. Shipped with the RTOSWin solution are some pre-defined INF files and
two template INF files, RTOS_Template.inf (template for one PCI device configuration) and
RTOS_MFC_Template.inf (template for multiple PCI device configurations).

3.4.3.5.1 Section [Driverinstall_ HwAddReq]

FriendlyName

If this entry exists it will override any automatically generated device friendly name. Normally
the device’s friendly name will be automatically generated by the RTOS Device Class Installer
(RtosPnplnstaller.dll), this name is based on the DEVICEDISPLAYNAME defined in section
[Strings].

3.4.3.5.2 Section [Strings]

DEVICEDISPLAYNAME

Will be displayed as device name (in the Windows Device Manager)
DEVICECLASSNAME

Will be displayed as the device class name (in the Windows Device Manager)
MFGNAME

Manufacturer name

INSTDISKNAME

Name of the installation resource

SERVICEDISPLAYNAME

Name of the driver

SERVICEDESCRIPTION

Description of the driver

3.4.3.5.3 Section [Rtelnstall]

AutoDeviceFriendlyName

The RTOS Device Class Installer uses this entry to determine how to create the device’s
friendly name (which is shown in the Windows Device Manager).

Bit O: create a friendly name if set to 1 (otherwise DEVICEDISPLAYNAME will be used by
Windows)

Bit 1: if set to 1 then append the DOS device (COMX, LPTx)

Bit 2: if set to 1 then append a unique ID (assure that all device names are unigue)

10.10.2024 Page 24/205

3.4.3.5.4 Section [DriverInstall.Rtelnstall]

MatchBusDevFunc = OxFFFFFFOO

this INF file will only be valid for PCI devices which are matching the given pattern.

Value pattern OXBBDDFFUU:

— BB = PClI bus index

— DD = PCI device index

— FF = PCI function index

— UU = unused (reserved)

If the value for BB, DD or FF is set to OxFF then all such devices will match, otherwise only the
specified one will match.

Example: OXFFFF0100 - only the PCI device with function 01 will match (bus and device
don’t care).

This entry is required in case that two identical PCI cards shall be controlled by the RTOS and
different settings in the INF file shall be used (e.g. one device generates an interrupt and the
second does not). In this case either two different INF are required or one INF file with two
different configurations has to be created.

3.4.3.5.5 Section [DevicelList]

This section contains at least one condition which PCI device shall use the RtosPnp driver. The PCI
device is determined by its PCI vendor and device ID. If more than one PCI device shall use the
RtosPnp driver then multiple of these entries have to be made.

%DEVICEDISPLAYNAME% = Driverinstall, PCI\WVEN_XXXX&DEV_YYYY
PCI devices with vendor id XXXX and device id YYYY will use this INF file.

10.10.2024 Page 25/205

3.4.3.5.6 Section [Driverinstall_HwAddRegUsrDef]

Osld
determines the OS the device should be assigned to: FFFFFFFE=auto,
FFFFFFFD=0OsIdependent FFFFFFFC=Host (Windows), else=value
DeviceType
determines the device type: FFFFFFFE=auto, 00=other, 01=virtual, 02=PClI
PciBus
determines the PCI bus index value: FFFFFFFE=auto, FFFFFFFF=unused, else=value
PciDevice
determines the PCI device index value: FFFFFFFE=auto, FFFFFFFF=unused, else=value
PciFunction
determines the PCI function index value: FFFFFFFE=auto, FFFFFFFF=unused, else=value
PciPin
determines the PCI interrupt pin value: FFFFFFFE=auto, FFFFFFFF=unused, else=value
ConfiginterruptO
These entries describe the source of the first interrupt on the device. If a device is capable to
generate more than one interrupt (e.g. PCle devices using MSIs) then additional
ConfiginterruptX entries exist (Configinterruptl, Configinterrupt2, ...)
o InterruptType
FFFFFFFE=auto detect, normally you should not change this value
(00=Pic, 01=loApic, 02=LocalApic, 03=IPI, 04=MSI, 05=Virtual)
o InterruptTriggerMode
FFFFFFFE=auto detect (PCI = level, legacy = edge)
00: set to level triggered
01: set to edge triggered
o InterruptPolarity
FFFFFFFE=auto detect (PCI = low/falling, legacy = high/rising)
00: low level when level triggered or falling edge when edge triggered
01: high level when level triggered or rising edge when edge triggered
o InterruptDontDisableOnRtosStop
0: disable interrupts after the RTOS is stopped (to avoid system crash)
1: don't disable interrupt on RTOS stop (requires a handler on Windows)
o InterruptDoesntinterrupt
0: device generates interrupts
1: device doesn’t generate interrupts (allow interrupt sharing with Windows)
o InterruptRegisterToWindows
0: don’t register a interrupt handler to Windows
1: register a interrupt handler to Windows (normally this is required if the device
generate interrupts)
Note: if InterruptDoesntinterrupt is set to 1 no handler will be registered, the value set
for InterruptRegisterToWindows is ignored
o InterruptRequestMode
00: exclusive
01: shared
Note: if InterruptDoesntinterrupt is set to 1 the value set for InterruptRequestMode is
ignored

o InterruptTargetAddressType
FFFFFFFE=auto detect, normally you should not change this value
00=Processor bit mask,
0O1=Local Apic Id,
02=Logical Id (Flat),
03=Logical Id (Cluster)
Currently only the Local APIC is supported (value 01)!
o InterruptTargetAddress
Interrupt target address, meaning depends on InterruptTargetAddressType
(01 = local APIC ID, this value will be determined automatically)
o InterruptProcessorVector
Interrupt vector to be used.
FFFFFFFE=auto detect
00 .. FF: manually determined interrupt vector
The following restrictions for the interrupt vector exist:
a) If Windows is using one single CPU core and the RTOS is running in exclusive

10.10.2024 Page 26/205

mode, values from 0x00 up to OXFF are allowed. Note: automatic configuration will
only use values between OXEOQ and OxFF.

b) If Windows is using more than one CPU core, values have to be 0xFO or higher.
¢) If the RTOS is running in shared mode and Windows is using only one single CPU
core, values have to be OXEO or higher.

3.4.4 RTOS config file

3.4.4.1 Windows controlled PCI devices not using interrupts

Sometimes a conflicting Windows device is known to never really generate interrupts.

In such cases it is possible that other devices which are controlled by the RTOS are allowed to use the
same interrupt line as the Windows device would use — normally it is not allowed that the same
interrupt line is used by both, Windows and the RTOS (see section 3.2).

If the RTOS is started by the Windows Uploader it will first check for interrupt conflicts. If such conflicts
are detected an error message will be shown and the RTOS will not be started.
The error message identifies the conflicting devices.

Example:
Interrupt conflict between a PRO/100 card that shall be controlled by the RTOS and a USB host
controller that shall be controlled by Windows. The following error message will be displayed.
ERROR: Device Configuration - conflicting devices for interrupt (16)
- Intel (R) 6300ESB USB universal host controller - 25A9
(PCI\VEN_8086&DEV_25A9&SUBSYS_25A18086&REV_02\3&267A616A&0&ES)
- RTOS PRO/100 compatible PCI card
(PCI\VEN 8086&DEV_1229&SUBSYS 000C8086&REV_08\4&3ABFDOAC&0&00F0)
The USB host controller is identified by the following device string:
PCI\VEN 8086&DEV_25A9&SUBSYS 25A18086&REV_02\35267A616A508ES

In case you know that this USB host controller will never generate interrupts you may insert the

following configuration setting into the RTOS configuration file:

[WindowsDevices]

"MaxInterruptShareDeviceIndex"=dword:01
"InterruptShareDevice0"="PCI\VEN 8086&DEV_25A9&SUBSYS 25A18086&REV_02\3&267A616A&0&ES"

The value of InterruptShareDeviceO must be identical to the device name shown in the Uploader error
message. Wildcards ' for multiple and ‘!’ for a single character are supported.

10.10.2024 Page 27/205

3.5 Driver Signing

Digital signatures are used to prevent viruses from installing or manipulating drivers by ensuring their
integrity. To be able to install a driver without a signing warning or error the signatures must be
correct.

Since Windows Vista it is possible for a software publisher to sign a driver using a KernelMode
CodeSigning certificate, which can be bought from a Certificate Authority (CA).

3.5.1 Driver Package Signing
A RtosPnp driver package typically contains:

- RtosPnp.sys Driver

- RtosPnplnstaller.dll Class(Co)lnstaller
- WdfColnstaller01009.dll Driver Framework
- MyDiriver.inf Inf-File

- MyDriver.cat Catalog file

RtosPnp.sys, RtosPnplnstaller and WdfColnstaller01009.dll are signed to prevent code manipulation.
MyDriver.inf is not signed - its integrity is ensured by the catalog file.

The catalog file contains the filename and hash information about all other files which are part of the
driver package. To protect against any changes the file is signed.

After modifying an Inf-File it is required to rebuild and sign the catalog file.
The catalog filename is defined by the Inf-File entry “CatalogFile”.

Prerequisites:

- Windows Driver Kit fro the code signing tools

- A “Kernel Mode Code Signing” certificate issued for example from DigiCert,
GlobalSign, Thawte, VeriSign or any other authority listet in Microsoft “Cross-
Certificates for Kernel Mode Code Signing”

- A Microsoft Cross-Certificate corresponding to the “Kernel Mode Code
Signing” certificate.
A list can be found in the MSDN “Cross-Certificates for Kernel Mode Code
Signing”
http://msdn.microsoft.com/en-
us/library/windows/hardware/dn170454(v=vs.85).aspx

- The driver package to be signed

Signing:
1) Open a WDK Build Environment - for example Windows 7 “x86 Free Build Environment”.
2) Change into the directory containing all your driver package files.
3) Ensure the Inf-File contains all required modifications.
Tip: The Inf-File name and “CatalogFile” entry should be different from their original.
4) Delete any existing catalog file in the driver package directory.
5) Creating a new catalog file by calling:

C:\MyDriverPackage>inf2cat.exe /driver:"."
/0s:2000,XP_X86,XP_X64,Server2003_X86,Server2003_X64,Vista_X86,Vista_X64,Server20
08_X86,Server2008_X64,7 X86,7 X64,Server2008R2_X64 /verbose

You may add or remove supported OS as required. A list of possible options will be shown
calling: “inf2cat.exe /?”

10.10.2024 Page 28/205

http://msdn.microsoft.com/en-us/library/windows/hardware/dn170454(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/hardware/dn170454(v=vs.85).aspx

General | Security Catalog

General | Security Catalog

verified.

Security Catalog Information
=1\ This security catalog is not digitally signed and cannot be

Field

Value

L__E\"ersion

V1

BSubject usage
BList identifier
BEf‘fecﬁve date
BSubject algorithm

13614 131112..,
13614131012,

1361413111211
40fabl118414a5942a6c7 2059 ..
Wednesday, August 20, 2014 10:06..
1.3.6.1.4.1.311.12.1.2
30819 1e04004f0053020410 ..
3040 1e 0a 00 43 00 5700 49 00 4...

m | »

Learn more about security catalog

View Signature

Catalog entries:

Tag

143697ECEC19A851DEOCE 268 554EC00C 22B6F92E
5D 3EBESFC 107302830048638 7DECD35172FDEE1C
626588150 28998CC 3DBAD 51644499CEBF440 20F 5F
AODO3CT5D36F1IFF227B262BC3AADBTTTETI512F0

Entry details

Field
Thumbprint

Value i

62698b1502b3 98 cc 3d 8ad5 16... |—|
File mydriver.inf B

OSAtr 2:5.00.7:5.1.2:5.2.7:6.0.2:6.1
< | 11}

] »

Value:

Learn more about security catalog

The created catalog file can be open by a double click. It is currently unsigned. The Security "
Catalog lists all covered files.

6) Sign a catalog file by calling:

C:\MyDriverPackage>signtool.exe sign /v /ac "C:\MyCerts\MyCrossSignCert.cer" /f
"C:\MyCerts\MyCodeSignCert.pfx" /p MyCodeSignCertPassword /t
http://timestamp.verisign.com/scripts/timestamp.dll MyDriver.cat

A list of possible options will be shown calling
' Security Catalog

General | Security Catalog

Security Catalog Information
This security catalog is valid.

: “signtool.exe /?”

Field

B\n‘ersion

Value

Vi

BSubject usage
BList identifier
BEf'fech've date
BSubject algorithm

513614131112,
&1.3.6. 14131112,

1.3.6.1.4.1.311.12. 1.1
40fab1183414a5942a6c7 2c 59 ..
Wednesday, August 20, 2014 10:08..
1.3.6.1.4.1.311.12.1.2
308119 1= 04 00 4f00 530204 10 ..
30401202 004300570042004...

m

b

Learn more about security catalog

View Signature

After signing the catalog file it should be shown as valid and contain a signature.

7) Verifying a catalog file for "default authenticode signing policy" by calling:
C:\MyDriverPackage>signtool.exe verify /tw /pa /v MyDriver.cat

Please remember that this has to be done separately for 32 and 64 bit driver package.

10.10.2024 Page 29/205

http://timestamp.verisign.com/scripts/timestamp.dll%20MyDriver.cat

3.5.2 Certificate Pre-Installation

To prevent the “Do you trust this publisher” question during driver installation the certificate has to be
installed in the “Trusted Publishers Certificate Store”.

This is done automatically after you once select “Always trust software from ...”.
-7 Windows Security ﬂ

Would you like to install this device software?

, Name: Realtime Q5 Driver
[}y_‘ Publisher: acontis technologies GmbH

Always trust software from "acontis technologies Install Don't Install

GmbH

rg' You should only install driver software from publishers you trust. How can I decide which
device software is safe to install?

As an alternative you can pre-install the certificate in the store and so prevent the question.

1) Install the driver on a system and select “Always trust software from....”
2) Call “certmgr” from an administrator command line. The tool is part of Windows 7 or
alternatively the WDK. The certificate should be listed below “Trusted Publishers™:

File Action View Help
9| HE 4 LIXE = HE

5l Cetificates - Current User Issued To Issued By Intended Purposes
>] Personal
| Trusted Root Certification Au
| Enterprise Trust
| Intermediate Certification Au
| Active Directory User Object
| Trusted Publishers
| Certificates

| Untrusted Certificates
| Third-Party Root Certificatior
| Trusted People
| Smart Card Trusted Roots

55 acontis .. GlobalSign... Code Signing

4 i | SN

Trusted Publishers store contains 1 certificate.

3)
Certificate Export Wizarc e —
—_

Export File Format
Certificates can be exported in a variety of file formats.

Select the format you want to use:

226 £ uXD= @

Gl Certificates - Current User Issued To Issued By () Cryptographic Message Syntax Standard - PKCS #7 Certificates (.P78)
| Personal = - T
| Trusted Root Certification Ay Open
| Enterprise Trust
| Intermediate Certification Au
| Active Directory User Object

| Trusted Publishers
| Certificates Copy Export all extended properties

(") Bage-64 encoded X.509 (.CER)

Indude all certificates in the certification path if possible

Personal Information Exchange - PKCS #12 {FFX)

All Tasks Include all certificates in the certification path if possible

Cut Delete the private key if the export is successful

1 Untrusted Certificates Delete
| Third-Party Root Certificatior
| Trusted People

| Smart Card Trusted Roots Help

Microsoft Serialized Certificate Store ((55T)

Properties

Learn more about certificate file formats

< | T | mn

Export a certificate

10.10.2024 Page 30/205

Certificate Export Wizarc N —

Certificate Export Wizarc ™ —

File to Export
Specify the name of the file you want to export

File name:
c:\MyCerts\MyPublisherCert. cer|

Browse...

Completing the Certificate Export

Wizard
|
pr 1 You have successfully completed the Certificate Export
\-;_ = gj wizard,
c;_:;’ You have spedfied the following settings:

Export Keys No
Indude all certificates in the certification path No
File Format DER En
4 [| 3

[< Back][Mext = J[Cancel

[< Back][Finish][Cancel]

This file can now be used for pre-install the certificate on any PC and prevent the dialog during driver

installation.

The pre-installation can be done by right-click the file and select “install”’. The correct store is

important:
Certificate Import Wi

Certificate Store

Certificate stores are system areas where certificates are kept.

Windows can automatically select a certificate store, or you can specify a location for
the certificate.

() sutomatically select the certificate store based on the type of certificate
(@) Place all certificates in the following store

Certificate store:
Trusted Publishers

Learn mare about certificate stores

[< Back][Next >][Cancel]

Alternatively the certmgr.exe tool can be used to automatically install the certificate:
C:\MyCerts>certmgr.exe -add MyPublisherCert.cer -s -r localMachine trustedpublisher

A programmatically solution is also possible. The following calls will be required:

- CertOpenStore

- CertEnumcCertificatesInStore

- CertAddCertificateContextToStore
- CertFreecCertificateContext

- CertCloseStore

10.10.2024

Page 31/205

4 RTOS Operation Mode

The basic decision that has to be made is the RTOS Operation Mode that shall be used.
The following variants are available:

Shared Mode operation (single core system):

Windows and the RTOS both run on one single cpu core. Windows will only get CPU time
when the RTOS becomes idle.

Shared Mode operation (multi core system):

Windows utilizes all cpu cores in the system, the RTOS may run on an arbitrary cpu core.
Thus, the core where the RTOS is running will be shared by Windows and the RTOS.
Windows will only get CPU time on this core when the RTOS becomes idle.

Note: if the RTOS doesn’t become idle all Windows activities on that core will cease which will
also block all other Windows cores to operate correctly.

Exclusive Mode Operation

On a system with n cpu cores Windows will use the first (n-1) cores and the RTOS will use the
last cpu core. Both operating systems run completely independent from each other.

SMP Exclusive mode operation

On a system with n cpu cores Windows will use the first w cores and the RTOS will use the
remaining r cpu cores (where r > 1). The RTOS thus will use more than one core and run in
SMP mode (Symmetric Multiprocessing mode). Both operating systems run completely
independent from each other.

SMP Shared mode operation

On a multi core system Windows utilizes only the first cpu core, the RTOS will use all other
cpu cores in SMP mode. Thus, the first core will be shared by Windows and the RTOS.
Windows will only get CPU time when the RTOS becomes idle on this core.

The operation mode can be determined as follows.

a)

b)

The number of cpu cores used by Windows is determined by the Windows boot configuration.

Windows Vista/7/8/ 10

The boot configuration has to be edited using “BCDEdit” from the command line.

- Open a command line (cmd) with administrator rights (right click, start as administrator)
- enter “bcdedit /set numproc n” to configure Windows to use ‘n’ processor(s).

The setting can be removed with “bcdedit /deletevalue numproc”

To be able to start RTOS on an exclusive core on Windows Vista or newer the Uploader
automatically sets the following entry: “bcdedit /set firstmegabytepolicy useall”

This will not be removed when the product gets uninstalled.

The entry can be removed manually by calling “bcdedit /deletevalue firstmegabytepolicy”

The cpu cores that shall be used by the RTOS are determined by the configuration parameter
ProcessorMask in section [Rtos]. Bit O represents the first cpu core, bit 1 the second etc..
Examples:

ProcessorMask = 1: RTOS will run on core O (first core)

ProcessorMask = 2: RTOS will run on core 1 (second core)

ProcessorMask = 3: RTOS will run on core 0 and 1 (first two cores)

ProcessorMask = C: RTOS will run on core 2 and 3

10.10.2024 Page 32/205

4.1 Shared Mode operation (single core)

Windows and the RTOS both run on one single cpu core. Windows will only get CPU time when the
RTOS becomes idle.

i — —>
Windows Priority of Execution RTOS
Configuration
Boot configuration: no adjustment is necessary
ProcessorMask: 1

10.10.2024 Page 33/205

4.2 Shared Mode operation (multi core)
Windows utilizes all cpu cores in the system, the RTOS may run on an arbitrary cpu core. Thus, the
core where the RTOS is running will be shared by Windows and the RTOS. Windows will only get

CPU time on this core when the RTOS becomes idle.
Note: if the RTOS doesn’t become idle all Windows activities on that core will cease which will also

block all other Windows cores to operate correctly.

M

Q

- &

E:

9.-.

m

)

g

=

>

\J

Core 1. Core 2 (or 3,4,..):
RTOS + Windows
Windows

Configuration example 1 (RTOS running on first core, see picture)
Windows uses all cpu cores, the RTOS uses the first cpu core.

Boot configuration: no adjustment is necessary

ProcessorMask: 1

Configuration example 2 (RTOS running on second core)
Windows uses all cpu cores, the RTOS uses the second cpu core.
Boot configuration: no adjustment is necessary
ProcessorMask: 2

10.10.2024 Page 34/205

4.3 Exclusive Mode operation

On a system with n cpu cores Windows will use the first (n-1) cores and the RTOS will use the last cpu
core. Both operating systems run completely independent from each other.

Windows
Processes

Core 1: Core 2:

Configuration example 1 (dual core system, see picture)
Windows uses the first cpu core, the RTOS uses the second cpu core.
Boot configuration: set NUMPROC to 1

ProcessorMask: 2

Configuration example 2 (Qquad core system)

Windows uses the first 3 cpu cores, the RTOS uses the fourth cpu core.
Boot configuration: set NUMPROC to 3

ProcessorMask: 8

10.10.2024 Page 35/205

4.4 SMP Exclusive Mode operation

On a system with n cpu cores Windows will use the first w cores and the RTOS will use the remaining
r cpu cores (where r > 1). The RTOS thus will use more than one core and run in SMP mode
(Symmetric Multiprocessing mode). Both operating systems run completely independent from each
other.

Windows Windows

Processes Processes

Cores 1 + 2: Windows in SMP Mode

Cores 3+ 4: RTOS in SMP Mode

Configuration example 1 (quad core system, see picture)

Windows uses the first 2 cpu cores, the RTOS uses the last 2 cpu cores.
Boot configuration: set NUMPROC to 2

ProcessorMask: C

Configuration example 2 (octal core system)

Windows uses the first 4 cpu cores, the RTOS uses the last 4 cpu cores.
Boot configuration: set NUMPROC to 4

ProcessorMask: FO

10.10.2024 Page 36/205

4.5 SMP Shared Mode operation

On a multi core system Windows utilizes only the first cpu core, the RTOS will use all other cpu cores
in SMP mode. Thus, the first core will be shared by Windows and the RTOS. Windows will only get
CPU time when the RTOS becomes idle on this core.

N
9
3
!
o
m
X
D
g
: 2
()
2 sN 1
&
\J
Core 1. Core 2 (or 3,4,..):
RTOS + RTOS

Windows

Configuration example 1 (dual core system, see picture)
Windows uses the first cpu core, the RTOS uses all cpu cores.
Boot configuration: set NUMPROC to 1

ProcessorMask: 3

Configuration example 2 (quad core system)

Windows uses the first cpu core, the RTOS uses all 4 cpu cores.
Boot configuration: set NUMPROC to 1

ProcessorMask: F

10.10.2024 Page 37/205

5 RTOS VM configuration files (*.config files)

Configuration of the RTOS Virtual Machine is controlled using ASCII type config files.
Additional RTOS specific settings will also be stored in these files.

A config file has to start with the following header / signature:
RtosConfig

Another config file can be included (nested includes are possible) using:
#include “AnotherConfigFile.config”

A comment can be made for a whole line or at the end of a line
; This is a comment example
#include “AnotherConfigFile.config” ; This is another comment example

A config file should end with a new line to prevent compatibility problems with some versions.

This manual only covers generic settings valid for all RTOSWin solutions.
The configuration file is divided into the following main sections:

e [Upload] = Upload settings

o [Vmf] = Virtual Machine Framework settings

e [Host] = Host (Windows/Linux) configuration settings

e [Rtos] = RTOS 1 configuration settings for Osld 0
[Rtos1] = RTOS 2 configuration settings for Osld 1
[Rtos2] = RTOS 3 configuration settings for Osld 2

When document refers to [Rtos] this is also applicable for [Rtos1], [Rtos2],

5.1 Processor configuration (RTOS)
Please see chapter “4 RTOS Operation Mode” for additional details.

Section [Rtos]

Entry Name Type Description

Each bit represents a CPU to be used by a RTOS.
0x1 means 1st CPU,
0x2 means 2nd CPU,

0x5 means 1st and 3rd CPU
ProcessorMask Dword |
Limitations:

- Different Rtos can’t share CPU(s).
- An OS using multiple CPUs can’t share CPU(s) with
another OS also using multiple CPUs.

10.10.2024 Page 38/205

5.2 Interrupt Processor Vector Ranges

At the default configuration the RTOS interrupt processor vector range is always above the Windows
interrupt processor vector range — for compatibility even on exclusive core configuration.

Example 1 (QuadCore):

Windows Boot configuration: set NUMPROC to 1

Rtos Config file: [Rtos] “ProcessorMask”=dword:0F
- Windows vector range: 0x20-0xDF

- RTOS vector range: OxEO-OxFF

Example 2 (QuadCore):

Windows Boot configuration: set NUMPROC to 2

Rtos Config file: [Rtos] “ProcessorMask”=dword:0C
- Windows vector range: 0x20-0OxEF

- RTOS vector range: OXEO-OxFF

At example 2 Windows uses the first two cores and RTOS the other two cores.
Because the vector ranges overlap it must be ensured that the RTOS can handle incoming broadcast
interrupts. This feature (Multi-SMP with Windows 7) is supported since version 5.0.00.31.

When Windows uses only one processor which is not shared with RTOS it might be possible to
allow RTOS to use all available vectors from lowest 0x20 to highest OxFF.

This can be done at the [Rtos] section in the config file. Because of compatibility with old versions this
is not the default configuration.

Example 3 (QuadCore + processor vector settings):

Windows Boot configuration: set NUMPROC to 1

Rtos Config file: [Rtos] “ProcessorMask”=dword:0E
- Windows vector range: 0x20-0xEF

- RTOS vector range: 0x20-0xDF

Section [Rtos]

Entry Name Type Description

Optional; Set lowest vector allowed for range
determination

ProcessorVectorLowest Dword Warning: Do not change this value without request. An
invalid value causes system instability.
Optional; Set highest vector allowed for range
ProcessorVectorHighest Dword determination

Warning: Do not change this value without request. An
invalid value causes system instability.

10.10.2024 Page 39/205

5.3 Memory configuration

Each RTOS has to be configured to use an individual, specific physical memory range.

The individual memory range of each RTOS must be defined in the RTOS specific section.
Section [Rtos] for first, section [Rtos1] for second RTOS and so on.

Entry Name Type Description
RTOS memory physical base address (in bytes).
MemoryStartAddress Dword | omitted = use allocated memory

X = use this base address

MemorySize Dword | RTOS memory size

Optional value usefull with MemoryType 4. Will return

MemorySizeMin Dword error 0x00153B6D if allocated size is below.

Physical memory adress alignment (in bytes).
) Only relevant when “MemoryStartAddress” = 0.
Alignment Dword | g = no alignment used

Omitted equals 0

Highest physical address usable (in bytes).
AddressMax Dword | Only relevant when “MemoryStartAddress” = 0.

Omitted equals OXFFFFFFFF

0 = Autodetermination

1 = (reserved)

2 = RA,; not usable on EFI systems

MemoryType Dword | 3 = BCD: Maximum for x86=~512MB and x64=~3MB
4 = MEM; Allocated memory (contiguous)

Omitted equals 0

How MemoryType autodetermination selects a type:
If ,MemoryStartAddress® is omitted : MEM (4)

Else if BCD is available and (MemorySize < maximum reservable) and (MemorySize <
128MB) : BCD (3)

Else if Legacy- and not UEFI- firmware : RA (2)
Else if BCD is available : BCD
Else : Error
* BCD is available starting with Windows 7 — except on W10-2004.

** [f MemorySize is above BCD limit an additional SharedMemory named “OsXHeap”, where X is OS-
ID, will be allocated:
If MemorySize is <=16MB the SharedMemory will be of the same size — if not its size will be
(MemorySize — BCD limit). The MemorySize will be set to the BCD limit.

10.10.2024 Page 40/205

The global physical memory range, defined in the [Upload] section, has been superseded by

redesigned memory management and may

only be useful to override automatic determination.

Entry Name Type Description
RteMemorySize Dword | Memory-size-to-bereserved-forall RTOS

The following RTOS specific settings are deprecated and have been superseded by

VMF_OSIMAGE_INFO

(Exception: RTOS-32 still requires them for the debugger)
Entry Name Type Description
. :

ImageOffset Dword ;Isstlnests FOS-image-has-to-be-copied by the
EntryPointOffset Dword | Bootentrypointoffsetof the RTOS

VMFE-management-anchoroffset-Afterloading the RTOS
VtAnehorOffset Dword | image-the-uploaderwill-copy-the- VMF-management

i ond hi on.
VmfVersionOffset Dword "I'IH "IE'S'G.'"' GI set ’I‘te' cad g'tlne Ak QISI H |Iage the

5.3.1 Advantages and disadvantages of different OS memory reservation methods

This is an overall table. Specific OS may have additional limits like maximum usable memory or

maximum usable address.

Memory Type MEM BCD RA

Use Virtualization Technology (VT) No Yes No Yes No Yes
Available on UEFI systems Yes Yes Yes Yes No No
Size limit on 64bit host >W10-2004 <4GB <4GB | <512MB | <512MB | <4GB | <4GB
Size limit on 64bit host =W10-2004 <4GB <4GB oMB oMB <4GB | <4GB
Size limit on 64bit host <W10-2004 <4GB <4GB <3MB <3MB | <4GB | <4GB
Size limit on 32bit host != W10-2004 <4GB <4GB | <5612MB | <512MB | <4GB | <4GB
Size limit on 32bit host = W10-2004 <4GB <4GB oMB oMB <4GB | <4GB
Size limited to physical contiguous Yes Yes (1) Yes Yes Yes Yes
memory being available

Address limited to 32bit Yes No Yes Yes Yes Yes
Allocation size guaranteed No No Yes Yes Yes Yes
RTOS must be relocatable (2) Yes No No No No No
Influence by Windows Update:

Driver memory allocations Yes Yes No No No No
BCD-store “bad memory” settings No No Yes Yes No No
Boot loader replacement No No No No Yes Yes
Registry “HiberbootEnabled” setting No No No No Yes Yes

(1) ‘No’ for a further version supporting non-contiguous memory.
(2) Currently RTOS-32 and VxWorks are neither relocatable nor planed to become.

10.10.2024

Page 41/205

5.4 Time/Date and Timezone synchronization

The RTOSWin solution supports time/date and timezone synchronization to assure that all
partizipating operating systems show the same date and time. Each operating system may decide to
either use its own date, time and timezone or shall be synchronized by another OS.

The config file settings regarding the time/date and timezone synchronization are OS specific and
have to be made in an OS section like [Host\TimeSync] or [Rtos\TimeSync].

Entry Name Type Description

0 Auto (=RTC)

1 Time from RTC (Chipset) will be used

ModeGet dword |2 Time from Soft-RTC (OS) will be used

omitted = 0 = Default = RTC

This setting is currently evaluated by Windows only.

0 Auto (=UTC when available else Local)
1 UTC time will be set

2 Local time will be set

omitted = 0 = Default = UTC

ModeSet dword

0 Task will not be started

1 Task will be started

TaskEnabled dword | 2 Task will be started, init time and timezone once and
then finish.

omitted = 1 = Task will be started

This defines the task priority for the time/date and
timezone synchronization thread. The values are OS
o specific. The delivered config file contains OS specific
TaskPriority dword | information about lowest and highest possible priority.

If the entry does not exist then the OS uses an OS
specific priority compatible to older versions.

Identification string of the OS which is the source of the
time and date.

TimeSyncMaster string | Possible values are “Windows” and “Rtos”.

If the entry does not exist then the OS will act as master
and use its own time/date.

Identification string of the OS which is the source of the
timezone.

TimezoneSyncMaster string | Possible values are “Windows” and “Rtos”.

If the entry does not exist then the OS will act as master
and use its own timezone.

Shortly said every OS has to know where to take its info from — from itself (= master) or another OS
(= slave). When no configuration is found an OS takes its infos from itself.

10.10.2024 Page 42/205

5.4.1 Windows

By default Windows uses its own clock and is not being synchronized with another clock.

If the (first) RTOS shall be used as time and timezone master the following entries have to be
activated:

[Host\TimeSync]

"TimeSyncMaster"="Rtos"

"TimezoneSyncMaster"="Rtos"

[Rtos\TimeSync]
"TimeSyncMaster"="Rtos"
"TimezoneSyncMaster"="Rtos"

54.2 RTOS

By default the RTOS is being synchronized with the Windows clock.
The following entries have to be activated:

[Host\TimeSync]

"TimeSyncMaster"="Windows"

"TimezoneSyncMaster"="Windows"

[Rtos\TimeSync]
"TimeSyncMaster"="Windows"
"TimezoneSyncMaster"="Windows"

5.4.3 Windows /RTOS

Both OS are running separately without time/date and timezone synchronization. This is the default if
no configuration entries are found. Alternatively the following entries can be activated:
[Host\TimeSync]

"TimeSyncMaster"="Windows"

"TimezoneSyncMaster"="Windows"

[Rtos\TimeSync]

"TimeSyncMaster"="Rtos"
"TimezoneSyncMaster"="Rtos"

10.10.2024 Page 43/205

5.5 Section [Vmf]

This chapter describes all settings in the [Vmf] section of the config file. It contains VMF settings valid
for the whole RTOSWin system.

[Vm]

Entry Name Type Description

This parameter defines the maximum physical address
allowed for VMF memory.

When omitted “FF,FF,FF,1F,00,00,00,00” (=
0x000000001FFFFFFF = below 512MB) will be used.
The default value is “FF,FF,FF,FF,00,00,00,00” (=
AddressMax hex | 0xO0000000FFFFFFFF = below 4GB).

Sometimes using SharedCore requires a value of
“FF,FF,FF,8F,00,00,00,00” (= 0xO00000008FFFFFFF =
below 2GB). Uploader will inform about this requirement.
Before changing the value please affirm this will be
supported by RTOS.

Maximum number of events supported.

100 (fixed) for versions < 6.1.00.06

EventCount dword | 500 (default) for versions >= 6.1.00.06

Starting with 6.1.00.06 the number can be modified using
config entry “EventCount”.

This parameter can be used to override the determined
TimerHwInputFreq dword | VMF hardware timer input frequency with a specific value
(unit Herz).

This parameter specifies the maximum delay in TSC ticks
for reading all required timer and counter values for a
single point in time during timer and TSC frequency
determination.

TimerMeasureDelayLimit dword | Exceeding the default limit may indicate inaccuracy in the
determined frequencies.

=0 Use best value — recommended for running VmWare
>0 Limit in TSC ticks

If omitted “0x1388” (5000) is the default.

This parameter specifies the message level to be
displayed by a message box:

0 — only fatal errors

1 - also other errors

2 — also warnings

If omitted “0” is the default.

VerbosityLevel dword

This parameter contains flags for Hardware Virtualization
support:

Bit 0: Allow VT support for VT-x and VT-d.

Bit 1: Do not move host into a guest (Debug Flag)

Bit 2: Do not use VT-d (Debug Flag)

VtAllowed dword

10.10.2024 Page 44/205

[VmAlnterrupts]

Entry Name

Description

IdRenumber

dword

This parameter specifies if VMF should renumber interrupt
IDs. On default the IDs are given by Uploader. This
numeration is not contiguous and might become values
above 100. Some OS may not be compatible with such
high interrupt numbers so VMF can renumber the IDs
(contiguous, starting with given value).

0 — do not renumber IDs

>0 — renumber IDs equal or above given value

If omitted “0” is the default.

For example 0x30 (48) would mean that all IDs equal or
above 48 will be renumberd to contiguous ID’s starting
with 48.

[VmA\MessageBox]

Entry Name

Description

TextBufferLength

dword

This parameter specifies the buffer size to be used for
vmfMessageBox API.

The minimum value is 522 = (
VMF_MESSAGEBOX_MAX_TEXT_SIZE +
VMF_MESSAGEBOX_MAX_TITLE_SIZE + 2).
When omitted the minimum will be used as default.

10.10.2024

Page 45/205

5.6 Section [Upload]

This chapter describes all settings in the [Upload] section of the config file. It contains generic settings
valid for the whole RTOSWin system.

Entry Name

Type

Description

Trace

dword

Enable or Disable the Uploader tracing facility.
Disable tracing = 0 (default). Enable tracing = 1

TraceFile

string

If tracing is enabled, all trace data will be stored in this
named file. Default = "trace.txt".

WaitForRtosCommSubsystems

dword

Disabled = 0. Enabled = 1(default). If enabled: upon
starting the RTOS, the Uploader will wait for
communication subsystems to be initialized before
finishing. Enabling this parameter can increase the start
time. Disabling it could cause synchronization problems.

LaunchRtosControl

dword

This parameter causes the RtosControl system tray
application to be launched.

0 = do not launch

1 = (default) launch RtosControl tray application

2 = Don't start RtosControl, but let RtosService do
message box handling. If “MessageBoxShow” value is not
configured it will be set to 0.

RtosControlPath

string

This parameter is optional and can contain a relative or
absolute path with or without the executable name to
RtosControl.

MessageBoxShow

dword

This parameter causes message box to be auto-answered
without showing a dialog to ask for user input:
VMF_MESSAGEBOX_ABORTRETRYIGNORE will return
“Abort”

VMF_MESSAGEBOX_YESNOCANCELand
VMF_MESSAGEBOX_YESNO will return “Yes”
VMF_MESSAGEBOX_RETRYCANCEL will return
“Cancel’

all other will return “OK”

0 = auto-answer.
1 = show message box (default).

MessageBoxLog

dword

This parameter causes message box messages to be also
written into application system log.

This feature is independent from Microsoft Build-In feature
of logging message boxes to system log.

0 = do not write log entry.

1 = write log entry.

Default depends on “MessageBoxShow” setting. If a
message will be shown logging is disabled — else enabled.

BootCodeReservationForce

dword

0 = (default) reservation is not forced.

1 =forces Uploader to statically reserve processor boot
code memory.

On default the static reservation is not forced and will be
done only in case the RtosDrv could not dynamically
reserve the memory. Activating static boot code
reservation requires a reboot. Reservation will be
removed with “-memcfg -u" (or “-ur”) option only.

BootCodeBaseFallback

dword

Fallback base address to be used for processor boot code
memory reservation. Default value is 0x40000.

10.10.2024

Page 46/205

Entry Name

Description

SetFirstMegabytePolicy

dword

0 = force FirstMegabytePolicy not to be set.

1 = (default) set policy when required.

Policy will also not be set if BootCodeReservationForce is
active.

AllowMultiSmp

dword

Deprecated — this setting has been superseded by
VMF_OSIMAGE_INFO flag
VMF_OSIMAGE_INFO_FLAG_1_MULTISMP.

This parameter enables the option to run Windows 7 SMP
with RTOS SMP (Multi-SMP).

0 = (default) Multi-SMP not allowed for Windows 7. 1 =
Allowed.

Attention:

RTOS must explicit support Windows 7 Multi-SMP or the
system might crash! Please check release notes if Multi-
SMP is supported.

Flags

dword

Bit O:

When clear (default) RtosStart will not unload VMF or OS
after an error.

When set RtosStart will unload VMF and/or OS after an
error. But OS start failure will not unload VMF when it was
previously loaded by a separate call.

10.10.2024

Page 47/205

5.7 Multi Purpose Shared Memory

This chapter describes all settings of the config file regarding multi purpose shared memories in the
sections [SharedMemory\UserDefinedShmName] respectively
[SharedMemory\UserDefinedShmName\AccessModes].

(“UserDefinedShmName” can be a user defined name)

Attention:
When multiple large shared memories are configured it is possible the system has not enough
memory remaining to boot. Such a situation can be solved this way:

- Start the system in Safe Mode

- Change the SharedMemory configuration

- Start the RTOS to update with the new configuration

- Reboot the system

[SharedMemory\UserDefinedShmName]

Entry Name Type Description

This parameter specifies the name of the shared memory.
This name can be used to query the ID using
vmfldGetByName() respectively RtosGetldByName()
function.

Name string

Description string | A string describing the shared memory.

Base address of shared memory.

0 = automatic allocation (recommended)

X = use this static address as base

omitted = equals 0

Limitations for static addresses:

- The address must be within the range of
“‘RteMemoryStartAddress” and “RteMemoryStartAddress”
+ “RteMemorySize”

- The memory can not be accessed directly from
Windows.

Base dword

Physical memory adress alignment (in bytes).
Alignment dword | Only relevant when “Base” = 0.
0 = default = no alignment used

Highest physical address usable (in bytes).
AddressMax dword | Only relevant when “Base” = 0.
OXFFFFFFFF = default

Size dword | Size of shared memory (in bytes)

Path and Filename to load the shared memory content

File StING | trom a file or save it to.

0 = don't initialize memory. The memory will nevertheless
be zeroed once after allocation, but not each time VMF
gets loaded.

1 = zero memory
2 = initialize memory with file

Initialize dword |3 = a5 (2) but initialize with '0' if file not found instead of
error

7 = as (3) but on load renames "File" to "File.loaded".
Existing file will be replaced. In combination with "Save"
this prevents re-use of old data e.g. after power-failure.

F = as (7) but rename also read only files

10.10.2024 Page 48/205

Entry Name Type Description

Default value = 0 = don't save on stop
Possible flags:

Save dword | Ox1 = save content to file

0x2 = overwrite also write protected file

0x4 = also save during power failure handling

default access mode mask
(default = 1 = present,r+w,cached,no execute)

Possible flags are:
AccessDefault dword | 0X01 = present
0x02 = readonly
0x04 = uncached

0x08 = execute

[SharedMemory\UserDefinedShmName\AccessModes]

Entry Name Type Description

Define an explicit access mode for OS X (0 ... n)

0.’ dword | This overwrites the default access mode set by
“AccessDefault” for a specific OS.

5.8 OS Communication

5.8.1 Settings

The config file settings regarding the communication are OS specific and have to be made in an OS
section like [Host\Comm] or [Rtos\Comm].

Entry Name Type Description

Communication timeout in seconds

CommTimeout dword (How long this OS should wait for another). Default = 5.

Interrupt mode. 0=Polling, 1=Interrupt, omitted=
Windows: depending on "Realtime OS Driver" interrupt
ComminterruptMode dword | mode.

Rtos: depending on host (Windows) Comm interrupt
mode.

This defines the task priority for the comm thread. The
values are OS specific. The delivered config file contains

o OS specific information about lowest and highest possible
TaskPriority dword | priority.

If the entry does not exist then the OS uses an OS
specific priority compatible to older versions.

0 Task will not be started
TaskEnabled dword | 1 Task will be started
omitted = 1 = Task will be started

Set polling period in us.

Minimum period is 100 ps.

Default value is O which represents a duration of 1 jiffie.
This parameter is only valid in RTOSVisor.

CommPollPeriodUs dword

For a higher performance of Inter—OS communication interrupts can be used.
This will minimize event round-trip times between the OS.

10.10.2024 Page 49/205

After changing the config file setting “ComminterruptMode” RTE should be stopped for at least 10
seconds before restarted with the new configuration setting. Without waiting between stop and start
the configuration change of “ComminterruptMode” might not be completed.

5.8.2 Enable / Disable Comm Interrupt

The Comm interrupt configuration depends on:
- Config file settings “ComminterruptMode”, as described above.
This can be configured separately for Windows and each RTOS.

10.10.2024 Page 50/205

5.9 Resource Descriptor Technology (RDT)
Please read chapter “14.3 Intel(R) Resource Director Technology (RDT)” for details.

Section [VmARDT]

Entry Name

Type

Description

CatAllowed

Dword

0 CacheAllocationTechnology (CAT) is not allowed
1 CAT can be used when available
omitted = 1 = CAT will be used when available

CatMaskL%u1Cos%u2Cpu%u3

Dword

Configures the bitmask to be used for cache-level ‘%u1’ in
CAT-COS register index ‘%u2’ on CPU ‘%u3’.

‘%u1’ has to be replaced with cache-level (typical 2 or 3).
‘%u2’ has to be replaced with COS config register index.
‘%u3’ has to be replaced with CPU index

CatCdpAllowed

Dword

0 CAT-CodeDataPrioritization (CDP) is not allowed

1 CAT-CDP can be used when available

omitted = 0 = CAT-CDP will not be used

When active the COS registers are remapped from for
example 8x1 to 4x2 to individually configure data and
code.

CatMaskDataL%ul1Cos%u2Cp
u%u3

Dword

Used with CDP only. Configures data priority. Equal to
“CatMaskL%ul1Cos%u2Cpu%u3”.

CatMaskCodelL%ul1Cos%u2Cp
u%u3

Dword

Used with CDP only. Configures code priority. Equal to
“CatMaskL%ul1Cos%u2Cpu%u3”.

MbaAllowed

Dword

0 MBA is not allowed
1 MBA can be used when available
omitted = 0 = MBA will not be used

MbaThrottleCos%ulCpu%u?2

Dword

Configures the value to be used in MBA-COS register
index ‘%u1’ on CPU ‘%u2’.

‘%u1’ has to be replaced with COS config register index.
‘%u2’ has to be replaced with CPU index

Section [Rtos\RTD]

Entry Name

Description

CosldxCpu%u

Dword

Configures the COS-selector to be used by this OS on a
specific CPU.

‘%Uu’ has to be replaced with CPU index.

10.10.2024

Page 51/205

5.10 Virtualization Technology (VT)

[Vmi]
Entry Name Type Description
This parameter contains flags for Hardware Virtualization
support:
Bit 0: Allow VT support for VT-x and VT-d.
Bit 1: Do not move host into a guest (Debug Flag)
Bit 2: Do not use VT-d (Debug Flag)
VtAllowed dword
[...\Vmf]
These settings are OS specific and made in an OS sub-section like [Rtos\Vmf].
Entry Name Type Description
Some devices (mainly USB) are configured by BIOS to
access BIOS owned memory. When a BIOS does not
proper declare this memory a “DMA Fault” will occur. In
such a case this setting might be a workaround by
granting RTOS devices access to all system reserved
MapReservedMemory Dword memory:
0: no access
1: read+write access
3: read only access
omitted = 0 = no access
This setting allows RTOS to access ACPI tables and
memory maped PCI config space. On default such access
would cause an Extended-Page-Table (EPT) fault. Our
latest config files already contain this entry when it is
MapSystemTables Dword required by RTOS.
0: access denied
1. access granted
omitted = 0 = no access
10.10.2024 Page 52/205

6 Start/Stop the RTOS: Uploader Utility

6.1 Introduction

After the RTOSWin solution has been installed, you can use the Uploader Utility program to
start the real-time system. By taking advantage of command-line parameters, you can cause it
to perform a variety of functions.

For RTE 4.x The tool consists of two files:
e UploadRTOS.exe (Command line program)
e UploadRTOS.dII

For RTE 5.x The tool consists of three files:

e RtosUpload.exe (Command line program)
e RtosLib32.dll (For 32 bit applications)
e RtosLib64.dll (For 64 bit applications)

To run existing programs linked to UploadRtos.dll the file RtosLib32.dll can be copied to
UploadRtos.dll.

Caution: starting with RtE version 7.1.1 the RtosUpload.exe will be started with Asinvoke rights. For
most operations no admin rights are required. If the desired operation fails then the call must be rerun
with admin rights.

When the Uploader Utility is called to start the RTOS, it reads and processes its own command
line options. It also reads and processes configuration parameters from the system
configuration file. After the RTOS image has been loaded, it is given control.
Here is a summary of the services that the Uploader Utility together with other RTOSWin
components performs:
e Collects device configuration information (queries all RTOS devices),
e Loads configuration data (content of the *.config files) into memory,
e Performs system and device configuration consistency checks
(e.g. detects interrupt sharing conflicts),
Reserves memory for the RTOS,
Loads a RTOS image into memory,
Defines physical memory areas for use by the RTOS,
Initiates execution of the RTOS image,
Terminates a running RTOS session and releases system resources.

10.10.2024 Page 53/205

6.2 Uploader operation, command line options
Command-line Syntax: RtosUpload <Mode> [Options...]

Mode (prefix can be ‘-‘ or ‘/’)

Options / Description

-config "f1' <options>"

Load VMF using config file 'f1'. This will stop all running OS and
unload already loaded VMF.

'f1' use this file as config file
possible options are:
-vmf 'f2' use f2 as VMF binary (default is vmf.bin)
"fl" Start OS 'f1".
'f1' use this file OS image file
This can be used in combination with ‘-config’ and - or ‘-osid’.
Default OS id is 0.
-X Stop the RTOS given by option ‘osid’.
Without option ‘osid’ all RTOS will be stopped and VMF will be
unloaded.
-osid <id> Start or stop OS with this id

-memcfg "<params>"

Update memory configuration.
Possible parameter are:

-u uninstall
-a' install or update (requires >>-config "f1"<<)
V' show current configuration. Also usable with ‘-u’ or ‘-a’

-shmsave "Name" "f1"

Dump shared memory 'Name' into file 'f1'

-lic <parameter>

Configure runtime license
Possible parameter are:
<Licenseld> To install a license ID for this computer

-remove To remove an installed license 1D
-nosleep Do not insert a delay after starting the RTOS
-nowait Do not wait for a key pressed in case of errors
-noerror Never return an error code

-device "<string>"

Call RtosDevice(<string>). See RtosDeviceA() API for details.

-isvmfloaded

Checks if VMF is loaded.

Returns:

RTE_SUCCESS if VMF is loaded.
RTE_ERROR_VMF_NOTREADY if VMF is not loaded.

Any other return value means an error occurred during the query.
Errorvalues are defined in rteError.h

-isosrunning

Checks if OS given by option ‘osid’ is running.
Returns:

RTE_SUCCESS if OS is running.
RTE_ERROR_OSNOTRUNNING if OS is not running.

Any other return value means an error occurred during the query.
Errorvalues are defined in rteError.h

-isvmmapped

Checks if memory is mapped into a VM.

Returns:

RTE_SUCCESS if no memory is mapped.
RTE_ERROR_VM_MAPPED if memory is mapped.

Any other return value means an error occurred during the query.

10.10.2024

Page 54/205

Errorvalues are defined in rteError.h
This parameter is only valid in RTOSVisor.

-? Show help about possible options

Special Options Special Options — not generally supported

-faststart "<optl> <opt2> ..." FastStart configuration
Possible options are:
-config 'f1' use config file 'f1' (only with <-file>)
-file 'f2' use FastStart configuration file 'f2'
-vmf 'f3' use VMF binary file 'f3'
-0s 'f4' use OS binary file 'f4'

-[disable|oncelalways] disable FastStart, use only once or always
-[startvmf|startvmfos] start only VMF or start VMF and OS

-f "f1" Freeze system into file 'f1'
-u "f1" Unfreeze system from file 'f1'
-loop <count> Option for testing.

Repeat start for ‘count’ times - without unloading DII.

When the Uploader is called using “-config” mode first all running OS will be stopped and a loaded
VMF will be unloaded. Then the following steps are performed:

RTOS device configuration data is collected and stored in memory.

RTOS Device consistency checks are performed (e.g. interrupt sharing conflicts).

RTOSWin configuration data (content of the *.config files) is loaded into memory.

The RTOSWin configuration is verified (e.g. detect overlapped memory areas).

The VMF binary image is loaded into memory.

If an OS image was specified (“f1” mode), it will now be loaded into memory and then booted.

Load VMF and start first OS (any running OS will be stopped and VMF unloaded first):
RtosUpload.exe /config “vxwin.config” “C:\Tornado\target\config\VxWin\vxWorks.bin”

Start or Restart OS 0 (VMF must already be loaded) without loading VMF again:
RtosUpload.exe /osid 0 “C:\MyOsImages\\vxWorks.bin"

VMF will be loaded first (any running OS will be stopped and VMF unloaded first), followed by two OS:
RtosUpload.exe /config vxwin.config

RtosUpload.exe /osid 0 “C:\MyOsImages\\xWorks.bin”

RtosUpload.exe /osid 1 “C:\MyOsImages\vxWorks2.bin"

Using the “-x” mode in combination with “-osid” will stop the specified OS while “-x” without “-osid” will
stop all OS and unload VMF.

All OS will be stopped and VMF be unloaded:
RtosUpload.exe -x

Only OS 1 will be stopped. Other OS and VMF will not be affected:
RtosUpload.exe -x -osid 1

Remove memory reservation:

RtosUpload.exe -memcfg “-u

Set or update memory configuration by config-file:

RtosUpload.exe /memcfg “-a” -config “C:\MyConfigFiles\MyOs.config”

10.10.2024 Page 55/205

7 RTOS tray-icon application (RtosControl.exe)

If you start the demo version of the RTOSWin solution, the RtosControl tray-icon application will

automatically run. When it does, a tray icon will automatically appear in Windows taskbar. After
it has run for 30 minutes, the RTOS will be stopped and a dialog window is displayed on the PC
monitor. At this point, you can either command the program to run again or terminate it.

If your proprietary icon (rtoscontrol.ico) file is in the same directory as the RtosControl.exe
program, it will be displayed in place of ACONTIS’s icon. Otherwise, the ACONTIS icon will

appear.

Even if you have installed a full version of RTOSWin, this program will be executed. The
RtosControl application is responsible for showing a message box generated by the RTOS
Virtual Machine adaptation (e.g. in fatal error situations).

RtosControl specific settings in config file section [Upload]

Entry Name

Type

Description

LaunchRtosControl

dword

This parameter causes the RtosControl system tray
application to be launched.

0 = do not launch

1 = (default) launch RtosControl tray application

2 = Don’t start RtosControl, but let RtosService do
message box handling. If “MessageBoxShow” value is not
configured it will be set to 0.

RtosControlPath

string

This parameter is optional and can contain a relative or
absolute path with or without the executable name to
RtosControl.

MessageBoxShow

dword

This parameter causes message box to be auto-answered
without showing a dialog to ask for user input:
VMF_MESSAGEBOX_ABORTRETRYIGNORE will return
“Abort”

VMF_MESSAGEBOX_YESNOCANCELand
VMF_MESSAGEBOX_YESNO will return “Yes”
VMF_MESSAGEBOX_RETRYCANCEL will return
“Cancel”

all other will return “OK”

0 = auto-answer.
1 = show message box (default).

MessageBoxLog

dword

This parameter causes message box messages to be also
written into application system log.

This feature is independent from Microsoft Build-In feature
of logging message boxes to system log.

0 = do not write log entry.

1 = write log entry.

Default depends on “MessageBoxShow” setting. If a
message will be shown logging is disabled — else enabled.

RtosControl specific settings in config file section [Host\MessageBox]

Entry Name Type Description
This defines the task priority for the message box thread.
The values are OS specific. The delivered config file
o contains OS specific information about lowest and highest

If the entry does not exist then the OS uses an OS
specific priority compatible to older versions.
0 Task will not be started

TaskEnabled dword |1 Task will be started
omitted = 1 = Task will be started

10.10.2024 Page 56/205

8 The RTOS service application (RtosService.exe)

When installing RTOSWin the RtosService component is added into the list of services which
will be automatically started when Windows boots.

The service is responsible for the following tasks:

Windows Clock Correction (assures the Windows clock does not run too slow)

Date and Time synchronization between Windows and the RTOS

RTOS File Server for RtosFile support

RTOS Gateway

8.1 Clock Correction

When running in SharedCore mode Windows will loose timer interrupts when RTOS occupies the
CPU longer than a timer interval. As a result the Windows clock will be delayed

The clock correction compensates this problem by regulating the timer increments per clock tick.
The clock correction is enabled on default.

Before version 5.1.0.30/ 6.0.0.11 ClockCorretion could only be disabled by the following Windows
registry setting:

' Registry Editor

File Edit View Favorites Help

»- L. RtosDrv Mame Type Data
- L. RtosPnp ab]| (Default) REG 57 (value not set)

- RtosService "1 EnableTimeCorr REG_DWORD 000000000 (0)

. Parameters
, RtosVnet

4 1 F

Computer\HKEY_LOCAL_MACHIMENSYSTEMA CurrentControlSet\services\RtosService\Pararneters

Starting with 5.1.0.30/ 6.0.0.11 ClockCorretion can also be disabled by a config file entry:

ClockCaorrection specific settings in config file section [Host\ClockCorrection]

Entry Name Type Description
0 Task will not be started
TaskEnabled dword | 1 Task will be started
omitted = 1 = Task will be started

8.2 Date and Time synchronization
See chapter “0 Time/Date and Timezone synchronization” for details.

8.3 RTOS File Server for RtosFile support
See chapter “10.1.14 RTOS Library — files” for details.

8.4 RTOS Gateway

RtosGateway forwards a RtosSocket to an IP socket.

When a RTOS application supports using RtosSocket, like for example acontis EC-Master does, the
RtosGateway allows access to that application from an external PC.

In case of EC-Master it allows to visualize EtherCat data on an external PC.

RtosGateway specific settings in config file section [Host\Gateway]

Entry Name Type Description

10.10.2024 Page 57/205

Entry Name Type Description
This defines the task priority for the gateway thread. The
values are OS specific. The delivered config file contains
o OS specific information about lowest and highest possible
TaskPriority dword | priority.
If the entry does not exist then the OS uses an OS
specific priority compatible to older versions.
0 Task will not be started
TaskEnabled dword |1 Task will be started
omitted = 1 = Task will be started
Port dword | TCP port to be used
PipeThreadRxTimeout dword | Timeout reading RX pipe. Do not change without request!
PipeRxBufSize dword | RX pipe buffer size. Do not change without request!
10.10.2024 Page 58/205

9 The Realtime OS Virtual Network Adapter (RtosVnet.sys)

All OS (Windows and RTOS) can communicate using a virtual network.
The “Realtime OS Virtual Network Adapter” (RtosVnet.sys) enables Windows to access this virtual
network.

9.1 Configuration
Itis OS dependent which features of the “Realtime OS Virtual Network Adapter” can be configured.

9.1.1 Windows

9.1.1.1 MAC Address
The MAC address can be configured using the Windows device manager.
Open the device manager and double-click “Realtime OS Virtual Network Adapter” below “Network
adapters”
Realtime OS5 Virtual Network Adapter (IRQ) Properties @1

| General |[Ac|\ranced_]| Driver I Details I Resource5|

The following properties are available for this network adapter. Click
the property you want to change on the left, and then select its value
on the right.

Property: Value:

| in orkmm [AA—BB-CC-DD-EE—N I

[ok [coneal |

LSeIect the “Advanced” tab and “Network MAC address” to change the MAC address value.

9.1.1.2 Link Mode

The link mode can be configured using the Windows device manager.
Open the device manager and double-click “Realtime OS Virtual Network Adapter” below “Network
adapters”

10.10.2024 Page 59/205

Realtime OS Virtual Metwork Adapter (IRQ) Properties M

General LAdvanced]| Driver | Details | Resources|

The following properties are available for this network adapter. Click
the property you want to change on the left, and then select its value
on the right.

Property: Value:

[ok][camcel |

LSeIect the “Advanced” tab and “Link mode”.

- “Always link up” means the adapter behaves like a network card always connected to a switch
or hub.

- “Link up while running” means the adapter behaves like a network card connected with a
crossover cable to another PCs network card. If the other PC is turned off the link is down.
When a RTOS is running the link will be up and when it’s stopped the link will go down.

9.1.1.3 Network Address
The network address can be changed using the “Network Connections”.
| u

(= @]=]
@n\:jv| E-' € MNetwork and Internet » Metwork Connections » - | 4 | | Search Network Connections g |
File Edit View Tools Advanced Help
Organize Disable this network device Diagnose this connection Rename this connection » ==+ I@I
Name : Status Device Name Connectivity Metw
U Local Area Connection 2 Network 2 Broadcom MetXtreme Gigabit Et... Internet access Publi
','1' Local Area Connection4 Unidentified network Realtime OS Virtual Metwork Ad... Mo network access Publi
-
W' Local Area Connection 4 Status |E|

-
General a [

% Local Area Connection 4 Properties

Connection - - Internet Protocol Version 4 (TCP/IPv4) Properties @
Networking | Sharing
IPv4 Connectivity Gene_lral

IPv6 Connectivity| | Connect using:

Media State: 5) You can get IP settings assigned automatically if your netwark supports
edia & Reaftime OS5 Virtual Network Adapter (IRG) this capability. Otherwise, you need to ask your network administrator
Duration: for the appropriate IP settings.

Speed: Configu
This connection uses the following items: () Obtain an IP address automatically
Details. .. -

o8 Cliert for Microsoft Networks @) Use the following IP address:
B (05 Packet Scheduler

gﬁle and Printer Sharing for Microsoft Networks
Activity -4 Intemet Protocol Version & (TCP/IPvG) Subnet mask: 255,255 .255. 0
- Intemet Protocol Version 4 (TCP/IPv4)

& |ink-Layer Topology Discovery Mapper /0 Driver

. Link-Layer Topology Discovery Responder
Packets: Obtain DNS server address automatically

Uninstall Properti Preferred DNS
= R TETErre server:
[y Properties E Description

Transmission Control Protocol/Intemet Protocel. The defd Alternate DNS server:

wide area network protocol that provides communication
[validate settings upon exit

across diverse interconnected networks.
[OK] [Cancel]

IP address: 192 . 168 . 157 . 1

Default gateway:

(@) Use the following DNS server addresses:

ok J[¢

10.10.2024 Page 60/205

9.1.2 RTOS
Please check the product specific manual for virtual network adapter configuration possibilities.

10.10.2024 Page 61/205

10 The RTOS Library

The RTOS library provides higher level communication services for synchronizing Windows with the
RTOS or to exchange data between the operating systems. The RTOS library is based on VMF
functions which provide the basic communication functionality.

This library is provided in source code as it has to be ported to the RTOS. To make this job easier
most of the source code is written OS independently. The OS adaptation is done in a separate OS
adaptation layer. VmfWin provides example implementations.

10.1 RTOS Library — Application Layer API

This section describes the RTOS library functions provided for the user.
User applications will have to include the RtosLib.h header file prior to using the RTOS library
functions.

10.1.1 Windows applications

10.1.1.1 General Restriction

Before version 5.1.00.29 / 6.0.00.04 the RTOS Library API can only be called concurrently by a total
number of maximum 31 threads (total sum of threads used in one or multiple executable applications).

10.1.1.2 RTE Version 4.x

The Windows part of the RTOS Library is implemented in the UploadRtos.dll dynamic link library.
Windows applications have to be linked together with the library UploadRtos.lib.

10.1.1.3 RTE Version 5.x
The Windows part of the RTOS Library is implemented in the RtosLib32.dll (32 bit) and RtosLib64.dll
(64 bit) dynamic link library.
Windows applications have to be linked together with the library RtosLib32.lib (32 bit) or RtosLib64.lib
(64 bit).
To run existing programs linked to UploadRtos.dll the file RtosLib32.dll can be copied to
UploadRtos.dll.

10.1.2 RTOS applications

The RTOS part of the RTOS Library in most cases is implemented in a binary library. Details of the
RTOS part can be found in the corresponding RTOSWin product manual.

10.10.2024 Page 62/205

10.1.3 RTOS Library —initialization and shutdown

The first step which has to be taken when the RTOS Library shall be used is calling the appropriate
initialization routines of the library. After this step the RTOS Library routines are available. If the
system shall be shut down, the de-initialization functions have to be called.

10.1.3.1 RtosLiblInit
Initialize the RTOS Library.

UINT32 RtosLiblnit (VOID)

Parameter

Return
RTE_SUCCESS on success and an error-code on failure.

Comment
Each process must call this function at least once before using RtosLib.
An internal call counter is incremented each call. The initialization will be done when the value goes
from 0 to 1 and the de-initialization when it goes from 1 to 0.
There are some RtosLib functions not requiring RtosLiblnit to be called:
- RtosSetOutputPrintf
- RtosResultGetModule
- RtosResultGetText
- RtosDevice
- RtosSetMemoryConfiguration

10.1.3.2 RtosLibDeinit
De-Initialize the RTOS Library.

UINT32 RtosLibDeinit (VOID)

Parameter

Return
RTE_SUCCESS on success and an error-code on failure.

Comment

A process must first close all RtosLib handles and call all Stop functions where it called Start before.
An internal call counter is decremented each call. The initialization will be done when the value goes
from 0 to 1 and the de-initialization when it goes from 1 to 0.

After De-Init was done no other RtosLib function except RtosLiblnit should be called.

10.1.3.3 RtosCommStart
Start the inter OS communication subsystem (e.g. required for events).

UINT32 RtosCommStart (VOID)

Parameter

Return
RTE_SUCCESS on success and an error-code on failure.

Comment

10.10.2024 Page 63/205

The following OS will do this automatically:

- Windows: Handled by RtosDrv

- VxWorks: Done by BSP

- Windows CE: Done by RtosService

It is responsible for communication services.

Please check chapter 5.8 “OS Communication” for configuration details.

10.10.2024 Page 64/205

10.1.34 RtosCommStop
Stop the inter OS communication subsystem.

UINT32 RtosCommStop (VOID)

Parameter

Return
RTE_SUCCESS on success and an error-code on failure.

Comment

The following OS will do this automatically:
Windows: Handled by RtosDrv

VxWorks: Done by BSP

Windows CE: Done by RtosService

10.1.3.5 RtosCommWaitForSubsystems

Wait until all required subsystems are up and running. The application has to wait until all
communication subsystems are ready prior to calling the inter OS communication functions of the
RTOS Library (e.g. events, interlocked data access, ...).

UINT32 RtosCommWaitForSubsystems (

UINT32 dwOsld,
UINT32 dwTimeout,
BOOL* pbSubsystemsinitialized)
Parameter
dwOsld
[in] Operating System ID.
dwTimeout

[in] Timeout in seconds.
pbSubsystemsinitialized
[out] TRUE if the subsystems are initialized, FALSE if not.

Return
RTE_SUCCESS on success and an error-code on failure.

Comment

The application wants to communicate with at least one OS (usually Windows). The value given in
dwOsld has to be set to the appropriate value corresponding with this OS, it can be determined by
RtosGetldByName(). If communication with more than one OS is requested then this function has to
be called for each of the corresponding operating systems.

10.10.2024 Page 65/205

L]
10.1.3.6 RtosMsgBoxStart

Start the inter RTOS message box communication mechanism.
UINT32 RtosMsgBoxStart (VOID)

Parameter

Return
RTE_SUCCESS on success and an error-code on failure.

Comment
If the caller’s operating system will show the message box it has to be assured that the process calling
RtosMsgBoxStart() is able to do this job (e.g. on the Windows side this function may not be called by a
Windows Service as services are not able to get a Window handle).
This function is called by default on

- Windows (by RtosControl)

___|
10.1.3.7 RtosMsgBoxStop

Stop the inter RTOS message box communication mechanism.
UINT32 RtosMsgBoxStop (VOID)

Parameter

Return
RTE_SUCCESS on success and an error-code on failure.

Comment

This function is called by default on
- Windows (by RtosControl)

10.10.2024 Page 66/205

__|]
10.1.3.8 RtosGetldByNameA

Get a VMF ID by a given name.

UINT32 RtosGetldByNameA(
Const CHAR* szName,

UINT32 dwldType,
UINT32* pdwld)
Parameter
szName
[in] Name of the desired element
dwldType
[in] Element type to get an ID of. See comment for supported types (RTOS_ID_XxxXx).
pdwOsld

[out] requested ID.

Return
RTE_SUCCESS on success and an error-code on failure.

Comment

RTOS_ID_OS:

Every operating system which is part of the RTOS VM (at least Windows and one RTOS) is required
to have a unique name by which it can be identified. This name will be determined by setting the
appropriate entry “Name” in the OS config section in the RTOS VM configuration files. The RTOS VM
then assigns a unique OS ID to internally identify the OS.

RTOS_ID_DEVICE:
Each device has an OS unigue name (devices with same name may be assigned to another OS). The
RTOS VM assigns a unique device ID to internally identify the device.

RTOS_ID_SHM:
Each shared memory requires an unique name. The RTOS VM assigns a unique shared memory ID
to internally identify the shared memory.

The macro RtosGetldByName can be used to call RtosGetldByNameW if UNICODE is defined and
RtosGetldByNameA if not.

__|]
10.1.3.9 RtosGetldByNameW

Get a VMF ID by a given name.

UINT32 RtosGetldByNameW (
Const WCHAR* wszName,

UINT32 dwldType,
UINT32* pdwld)
Parameter
szName
[in] Unicode name of the desired element
dwldType
[in] Element type to get an ID of. See comment for supported types (RTOS_ID_xxx).
pdwOsld

[out] requested ID.

Return
RTE_SUCCESS on success and an error-code on failure.

Comment

See RtosGetldByNameA().

The macro RtosGetldByName can be used to call RtosGetldByNameW if UNICODE is defined and
RtosGetldByNameA if not.

10.10.2024 Page 67/205

10.1.4 RTOS Library — events

This feature makes it possible for RTOS applications (thread or process) to asynchronously notify an
application under Windows of the occurrence of some event. Shared Events supports signaling in both
directions.

A typical use for Shared Events would be, for example, to coordinate activities between the two
operating systems. For example, if two applications use a shared memory area to communicate data
back and forth, the shared events mechanism could be used to synchronize the reading and writing,
i.e., to protect the integrity of the data.

In the rare case that events require a short round trip time Communication interrupt mode can be
enabled as described in chapter 5.8 “OS Communication”.

Starting with version 6.1.00.06 the formaly fixed total number of events (100) has changed to 500 per
default and can be modified using

[Vmf]
"EventCount"=dword: X

See chapter “5.5

10.10.2024 Page 68/205

Section [Vmf{]” for details.

|
10.1.4.1 RtosCreateEventA

Create a named event.

UINT32 RtosCreateEventA (

BOOL bManualReset,
BOOL binitialState,
const CHAR* szName,
RTOSLIB_HANDLE* phEvent)
Parameter
bManualReset
[in] Currently only auto-reset events are supported (bManualReset = FALSE).
blnitialState
[in] Currently the initial-state has always set to FALSE (non-signalled).
szName
[in] Event name
phEvent

[out] Event handle

Return
RTE_SUCCESS on success and an error-code on failure.

Comment

If the event already exists a handle to the existing event object will be returned.

The handle returned by RtosCreateEvent may be used for all subsequent accesses to the new event
object.

Any thread in the operating system that expects notification of an event can use the event’s object-
handle in a call to RtosWaitForEvent. Correspondingly, any thread in the other operating system that
wishes to send notification may use RtosSetEvent to send the signal. The setting and waiting
functions work in either direction. When the state of the specified object is triggered, the
RtosWaitForEvent function returns, and the waiting thread will continue executing.

Even though the initial state of the event object is formally specified by the binitialState parameter, the
only valid initial state is the non-signalled state.

All Shared Event objects are auto-reset objects. If the initial state of a event is not set to non-signalled,
an error will be returned. After the event has been signalled (RtosSetEvent), it remains signalled only
until the waiting thread is released. Thereupon, the system will reset the state to non-signalled. If no
threads are waiting, the event object remains signalled.

Use RtosCloseEvent to close the handle. The application is responsible for resource reclamation.
Shared events only work between the RTOS and Windows. Setting an event under Windows, can only
wake a thread in the RTOS and vice versa. It is impossible to use shared Events to wake up a thread
in the operating system under which the RtosSetEvent has been issued.

The macro RtosCreateEvent can be used to call RtosCreateEventW if UNICODE is defined and
RtosCreateEventA if not.

10.10.2024 Page 69/205

10.1.4.2 RtosCreateEventW
Create a named event.

UINT32 RtosCreateEventW (

BOOL bManualReset,
BOOL binitialState,
const WCHAR* wszName,
RTOSLIB_HANDLE* phEvent)
Parameter
bManualReset
[in] Currently only auto-reset events are supported (bManualReset = FALSE).
blnitialState
[in] Currently the initial-state has always set to FALSE (non-signalled).
szName
[in] Unicode event name
phEvent

[out] Event handle

Return
RTE_SUCCESS on success and an error-code on failure.

Comment

See RtosCreateEventA().

The macro RtosCreateEvent can be used to call RtosCreateEventW if UNICODE is defined and
RtosCreateEventA if not.

10.1.4.3 RtosOpenEventA
Open an already existing event object.

UINT32 RtosOpenEventA (

const CHAR* szName,
RTOSLIB_HANDLE* phEvent)
Parameter
szName
[in] Event name
phEvent

[out] Event handle

Return
RTE_SUCCESS on success and an error-code on failure.

Comment

If the event already exists a handle to the existing event object will be returned.

The macro RtosOpenEvent can be used to call RtosOpenEventW if UNICODE is defined and
RtosOpenEventA if not.

10.10.2024 Page 70/205

10.1.44 RtosOpenEventwW
Open an already existing event object.

UINT32 RtosOpenEventW (

const WCHAR* wszName,
RTOSLIB_HANDLE* phEvent)
Parameter
szName
[in] Unicode event name
phEvent

[out] Event handle

Return
RTE_SUCCESS on success and an error-code on failure.

Comment

See RtosOpenEventA().

The macro RtosOpenEvent can be used to call RtosOpenEventW if UNICODE is defined and
RtosOpenEventA if not.

10.1.4.5 RtosCloseEvent
Close access to a already existing event object.

UINT32 RtosCloseEvent (

RTOSLIB_HANDLE hEvent)
Parameter
hEvent
[in] Event handle
Return

RTE_SUCCESS on success and an error-code on failure.

Comment

A call to this function closes a handle to the event object.

RtosCloseEvent invalidates the specified object handle, decrements the object's handle count. Once
the last handle to an object is closed, the object is removed from the operating system.

10.10.2024 Page 71/205

10.1.4.6 RtosSetEvent
Signal a new event.

UINT32 RtosSetEvent (

RTOSLIB_HANDLE hEvent)
Parameter
hEvent
[in] Event handle
Return

RTE_SUCCESS on success and an error-code on failure.

Comment

The state of an auto-reset event object remains signalled until a single waiting thread is released, at
which time the system automatically sets the state to non-signalled. If no threads are waiting, the
event object's state remains signalled.

Note 1: Only auto-reset events are supported.

Note 2: If you call RtosSetEvent in the RTOS, you can only call RtosWaitForEvent in Windows. That
is, you cannot wait for the same event in the RTOS. If you do, the result is unpredictable.

Note 3: A call to RtosSetEvent will not immediately set the event int the counter-part OS due to
interactions between the two operating systems.

Note 4: Multiple calls to the RtosSetEvent function may be made, however, if the counterpart does not
consume one of them, a subsequent RtosSetEvent function call will replace the former unconsumed
event.

|
10.1.4.7 RtosWaitForEvent

Signal a new event.

UINT32 RtosWaitForEvent (

RTOSLIB_HANDLE hEvent,
DWORD dwTimeout)
Parameter
hEvent
[in] Event handle
dwTimeout
[in] Timeout in milliseconds. The function returns if the interval elapses, even if the

object's state is non-signalled. If dwTimeout is set to zero, the function tests the
object's state and returns immediately. If dwTimeout is set to RTOS_WAIT_INFINITE,
the function's time-out interval will never elapse.

Return
RTE_SUCCESS on success (event was signalled) and an error-code on failure
(RTE_ERROR_TIMEOUT on timeout).

Comment

RtosWaitForEvent checks the current state of the specified event object. If the object's state is non-
signalled, the calling thread will block.

Since only auto-reset event objects are used, the wait function that successfully receives the signal
resets the object's state to non-signalled before returning.

10.10.2024 Page 72/205

10.1.5 RTOS Library —interlocked data access

Interlocked data access is required whenever an atomic access to a shared data variable shall be
performed.

10.1.5.1 RtosiInterlockedCompareExchange

The function performs an atomic comparison of the specified values and exchanges the values, based
on the outcome of the comparison. The function prevents more than one thread inside the callers OS
as well as multiple operating systems from simultaneously accessing the same variable.

UINT32 RtoslInterlockedCompareExchange (
UINT32* volatile pdwDestination,

UINT32 dwExchange,
UINT32 dwComparand,
UINT32* pdwilnitial)
Parameter
pdwDestination
[in] Pointer to the destination value.
dwExchange
[in] Exchange value.
dwComparand
[in] Value to compare to destination.
pdwinitial

[out] Destination value found at start of compare.

Return
RTE_SUCCESS on success and an error-code on failure.

Comment

The function performs an atomic comparison of the Destination value with the comparand value. If the
destination value is equal to the comparand value, the exchange value is stored in the address
specified by pnDestination. Otherwise, no operation is performed.

The interlocked functions provide a simple mechanism for synchronizing access to a variable that is
shared by multiple threads or operating systems. The threads of different processes or different
operating systems can use this mechanism if the variable is in shared memory.

The parameters for this function must be aligned on a 32-bit boundary; otherwise, the function will
behave unpredictably.

Example (how to synchronize access to a shared memory region)
INT32* pnShmValue; /* points into shared memory area */
INT32 nTimeout;
UINT32 dwRes;
UINT32 dwInitVal; /* initial value when starting exchange */
BOOL bAccess = FALSE;

// when set to 0 no one owns the shared memory

// when set to 1 the counterpart may access shared memory

// when set to 2 we may access shared memory

for(nTimeout = 1000; 0 < nTimeout; nTimeout--)

{
dwRes = RtosInterlockedCompareExchange (pnShmValue, 2, 0, & dwInitVal);
if (RTE _SUCCESS != dwRes)

/* error during call */
goto Exit;
if(0 == dwInitVal)
/* success: value exchanged */
bAccess = TRUE;
break;
Sleep (1) ;

10.10.2024 Page 73/205

}

/* check for access */
if (TRUE == bAccess)
{

// now access the shared memory region

// now release access to the shared memory region
*pnShmValue = 0;

__|]
10.1.5.2 RtosInterlockedExchangeAdd

The function performs an atomic addition. The function prevents more than one thread inside the
callers OS as well as multiple operating systems from simultaneously accessing the same variable.

UINT32 RtoslInterlockedExchangeAdd (
INT32* volatile ~ pnDestination,

INT32 nValue,
INT32* pninitial)
Parameter
pnDestination
[in] Pointer to the destination value.
nValue
[in] The value to be added (might be negative).
pninitial

[out] Destination value found before addition.

Return
RTE_SUCCESS on success and an error-code on failure.

Comment

The function performs an atomic addition.

The interlocked functions provide a simple mechanism for synchronizing access to a variable that is
shared by multiple threads or operating systems. The threads of different processes or different
operating systems can use this mechanism if the variable is in shared memory.

The parameters for this function must be aligned on a 32-bit boundary; otherwise, the function will
behave unpredictably.

10.10.2024 Page 74/205

10.1.5.3 RtosInterlockedAnd

The function performs an atomic AND operation. The function prevents more than one thread inside
the callers OS as well as multiple operating systems from simultaneously accessing the same
variable.

UINT32 RtoslInterlockedAnd (
UINT32* volatile pdwDestination,

UINT32 dwValue,
UINT32* pdw nitial)
Parameter
pdwDestination
[in] Pointer to the destination value.
dwValue
[in] The value used for the logical operation with the destination value.
pdwilnitial

[out] Destination value found before logical operation.

Return
RTE_SUCCESS on success and an error-code on failure.

Comment

The function performs an atomic AND operation.

The interlocked functions provide a simple mechanism for synchronizing access to a variable that is
shared by multiple threads or operating systems. The threads of different processes or different
operating systems can use this mechanism if the variable is in shared memory.

The parameters for this function must be aligned on a 32-bit boundary; otherwise, the function will
behave unpredictably.

10.1.5.4 RtoslInterlockedOr

The function performs an atomic OR operation. The function prevents more than one thread inside the
callers OS as well as multiple operating systems from simultaneously accessing the same variable.

UINT32 RtoslinterlockedOr (
UINT32* volatile pdwDestination,

UINT32 dwValue,
UINT32* pdw nitial)
Parameter
pdwDestination
[in] Pointer to the destination value.
dwValue
[in] The value used for the logical operation with the destination value.
pdwinitial

[out] Destination value found before logical operation.

Return
RTE_SUCCESS on success and an error-code on failure.

Comment

The function performs an atomic OR operation.

The interlocked functions provide a simple mechanism for synchronizing access to a variable that is
shared by multiple threads or operating systems. The threads of different processes or different
operating systems can use this mechanism if the variable is in shared memory.

The parameters for this function must be aligned on a 32-bit boundary; otherwise, the function will
behave unpredictably.

10.10.2024 Page 75/205

10.1.5.5 RtosInterlockedXor

The function performs an atomic XOR operation. The function prevents more than one thread inside
the callers OS as well as multiple operating systems from simultaneously accessing the same
variable.

UINT32 RtoslInterlockedXor (
UINT32* volatile pdwDestination,

UINT32 dwValue,
UINT32* pdw nitial)
Parameter
pdwDestination
[in] Pointer to the destination value.
dwValue
[in] The value used for the logical operation with the destination value.
pdwilnitial

[out] Destination value found before logical operation.

Return
RTE_SUCCESS on success and an error-code on failure.

Comment

The function performs an atomic XOR operation.

The interlocked functions provide a simple mechanism for synchronizing access to a variable that is
shared by multiple threads or operating systems. The threads of different processes or different
operating systems can use this mechanism if the variable is in shared memory.

The parameters for this function must be aligned on a 32-bit boundary; otherwise, the function will
behave unpredictably.

10.10.2024 Page 76/205

10.1.6 RTOS Library — shared memory

The RTOS VM platform provides one system-wide shared memory area to exchange data between
multiple operating systems. Some operating systems may only provide a limited amount of the shared
memory area to be mapped into the caller's memory context (e.g. Windows). In this case it is
necessary to use windowing technigue to access the whole shared memory area.

To use Shared Memory, the following steps must be performed:
e using the function RtosShmAddrGet, an application acquires a pointer to a block of Shared
Memory.
Note: While the size of the Shared Memory is limited only by the physical size of RAM,
Windows has internal limitations that restrict the amount of shared memory that can be
accessed at one time. Therefore, if you wish to take full advantage of a physically large shared
memory, you will have to use windowing techniques to do so:

Not accessable range RtosShmTotalSizeGet ()

max GrantedSize if
RequestedSize

| =

Accessable range

GrantedSize

RtosShmAddrGetAt ()

>

Not accessable range

RtosShmAddrGet () v

>

e Use the RtosShmTotalSizeGet function to acquire the size of the shared memory range.
e After setting the input parameter dwRequestedSize to the value returned by
RtosShmTotalSizeGet, call the RtosShmAddrGet function.
e [f the returned parameter pdwGrantedSize is not equal to dwRequestedSize, then
pdwGrantedSize represents the largest shared memory window you can access at that time.
e Through successive calls to RtosShmAddrGetAt, however, you can acquire the entire shared
memory.
Note 1: Once an RtosShmAddrGet or RtosShmAddrGetAt function has been used,
subsequent use of the same function will invalidate a previously returned address.
Note 2: Most RTOS and Windows applications address virtual memory space. While multiple
calls to these functions might return numerically identical virtual addresses, such addresses,
acquired at different times, will very likely point to different data areas.

10.10.2024 Page 77/205

10.1.6.1 RtosShmAddrGet
Determine the base address of the shared memory area.

If (RTOSLIB_API_VERSION < 50):

UINT32 RtosShmAddrGet (

UINT32 dwRequestedSize,
UINT32* pdwGrantedSize,
VOID** ppvShmAddr)
Parameter
dwRequestedSize
[in] Requested size of shared memory to be accessed by the application.
pdwGrantedSize
[out] Actually granted size that is mapped into the caller’'s memory context.
ppvShmAddr

[out] Base address of the mapped shared memory area.
If (RTOSLIB_API_VERSION >= 50):

UINT32 RtosShmAddrGet (

UINT32 dwShmid,
UINT32 dwRequestedSize,
UINT32* pdwGrantedSize,
VOID** ppvShmAddr)
Parameter
dwShmid

[in] Shared memory ID — can be requested by RtosGetldByName(...)
dwRequestedSize

[in] Requested size of shared memory to be accessed by the application.
pdwGrantedSize

[out] Actually granted size that is mapped into the caller's memory context.
ppvShmAddr

[out] Base address of the mapped shared memory area.
Return
RTE_SUCCESS on success and an error-code on failure.
Comment

Any pointer previously initialized with a call to RtosShmAddrGet or RtosShmAddrGetAt must be
considered as invalid after a renewed call to those functions.

10.10.2024 Page 78/205

10.1.6.2 RtosShmAddrGetAt
Determine the address of the shared memory area at a given offset.

If (RTOSLIB_API_VERSION < 50):

UINT32 RtosShmAddrGetAt (

UINT32 dwOffset,
UINT32 dwRequestedSize,
UINT32* pdwGrantedSize,
VOID** ppvShmAddr)
Parameter
dwOffset
[in] Offset from the shared memory base where to map the memory into the caller’s

memory context.
dwRequestedSize

[in] Requested size of shared memory to be accessed by the application.
pdwGrantedSize

[out] Actually granted size that is mapped into the caller's memory context.
ppvShmAddr

[out] Base address of the mapped shared memory area.
If (RTOSLIB_API_VERSION >= 50):

UINT32 RtosShmAddrGetAt (

UINT32 dwShmid,
UINT32 dwOffset,
UINT32 dwRequestedSize,
UINT32* pdwGrantedSize,
VOID** ppvShmAddr)
Parameter
dwShmld

[in] Shared memory ID — can be requested by RtosGetldByName(...)
dwOffset

[in] Offset from the shared memory base where to map the memory into the caller’s

memory context.

dwRequestedSize

[in] Requested size of shared memory to be accessed by the application.
pdwGrantedSize

[out] Actually granted size that is mapped into the caller's memory context.
ppvShmAddr

[out] Base address of the mapped shared memory area.

Return
RTE_SUCCESS on success and an error-code on failure.
Comment

Any pointer previously initialized with a call to RtosShmAddrGet or RtosShmAddrGetAt must be
considered as invalid after a renewed call to those functions.

10.10.2024 Page 79/205

10.1.6.3 RtosShmTotalSizeGet
Determine the total size of the system-wide shared memory area.

If (RTOSLIB_API_VERSION < 50):

UINT32 RtosShmTotalSizeGet(
UINT32* pdwsSize)

Parameter
pdwSize
[out] Total shared memory size.

If (RTOSLIB_API_VERSION >= 50):

UINT32 RtosShmTotalSizeGet(

UINT32 dwShmld,
UINT32* pdwSize)
Parameter
dwShmld
[in] Shared memory ID — can be requested by RtosGetldByName(...)
pdwSize

[out] Total shared memory size.

Return
RTE_SUCCESS on success and an error-code on failure.

Comment

10.10.2024 Page 80/205

.|
10.1.6.4 RtosShmSaveFileA

Save a shared memory to a file.

UINT32 RtosShmSaveFileA (

UINT32 dwShmid,
const CHAR* szFilename)
Parameter
dwShmld
[in] Shared memory ID
szFilename

[out] File to write shared memory data to.

Return
RTE_SUCCESS on success and an error-code on failure.

Comment

A shared memory ID can be queried using “RtosGetldByName”.

The macro RtosShmSaveFile can be used to call RtosShmSaveFileW if UNICODE is defined and
RtosShmSaveFileA if not.

.|
10.1.6.5 RtosShmSaveFileW

Save a shared memory to a file.

UINT32 RtosShmSaveFileA (
UINT32 dwShmid,
const WCHAR* wszFilename)

Parameter
dwShmid
[in] Shared memory ID
wszFilename
[out] File to write shared memory data to.

Return
RTE_SUCCESS on success and an error-code on failure.

Comment

A shared memory ID can be queried using “RtosGetldByName”.

The macro RtosShmSaveFile can be used to call RtosShmSaveFileW if UNICODE is defined and
RtosShmSaveFileA if not.

10.10.2024 Page 81/205

10.1.7 RTOS Library — date and time synchronization (clock synchronization)

10.1.7.1 RtosTimeSyncStart
Start the date and time synchronization.

UINT32 RtosTimeSyncStart (VOID)

Parameter

Return
RTE_SUCCESS on success and an error-code on failure.

Comment
This function is called by default on

- Windows (by RtosService)

- Windows CE (by RtosService)

- VxWorks (by VxWin BSP)
On other OS the time and date synchronization is not running by default and the initial RTOS date and
time value will have to be set to a reasonable initial value by the RTOS Board Support Package.
In the default configuration Windows is the master. Configuration is described in chapter “5.4
Time/Date and Timezone synchronization”.

10.1.7.2 RtosTimeSyncStop
Stop the date and time synchronization.

UINT32 RtosTimeSyncStop (VOID)

Parameter

Return
RTE_SUCCESS on success and an error-code on failure.

Comment

10.10.2024 Page 82/205

10.1.8 RTOS Library — OS scheduling

When running in shared mode (Windows and the RTOS share one single processor core) by default
the RTOS will always be executed with higher priority than Windows. Windows effectively runs as idle
task of the RTOS.

RTOS should never run any other task on the same or a lower priority than the idle task because it
might not get any CPU time.

In case the RTOS never enters its idle state this would lead to a situation where Windows never gets
CPU time. Therefore it is possible to control OS scheduling manually, e.g. to force the RTOS to switch
back to Windows.

10.1.8.1 Rtosldle

Regardless of the priority of the currently executing RTOS thread that calls Rtosldle(), this function
forces the execution context to switch immediately to Windows. Should you have a task that
monopolizes the CPU time, you can use this function to make certain that Windows receives
additional CPU time. Upon the occurrence of the next real-time interrupt (e.g. from the real-time
system timer), control will be returned to the real-time system.

VOID Rtosldle (VOID)

Parameter

Return

Comment
Before RTE version 5.0.00.02 / 4.5.00.20/ 4.1.01.13:
- If this function is called in exclusive mode it will return immediately.

Starting with RTE version 5.0.00.02 / 4.5.00.20 / 4.1.01.13:
- If this function is called in exclusive mode the processor will idle until next interrupt.

10.10.2024 Page 83/205

10.1.9 RTOS Library — notification events

The RTOS VM will notify the application about the occurrence of several events. If the RTOS
application waits for such an event the RTOS VM will signal this event and wait until the RTOS
application acknowledges that it has finished event handling.

For example, the RTOS application may wait for the STOP event, which will be signalled if the RTOS
is stopped by the Windows Uploader tool. In that case the application may block stopping the RTOS
until a safe state has been reached. After acknowledging this notification the RTOS will finally be
stopped by the Windows Uploader tool.

Important:

RtosNotification : Only one single thread is allowed to wait for a specific event.

RtosNotificationEx : Multiple thread are allowed but the API is currently implemented for
Windows only.

10.1.9.1 RtosNotificationWait
Wait for specific notification event.

UINT32 RtosNotificationWait (

UINT32 dwNotificationld
UINT32 dwTimeout)
Parameter
dwNotificationld
[in] Notification identifier. The following notification identifiers may be generated:
RTOS_NOTIFICATION_ID_BSOD - Windows BSOD
RTOS_NOTIFICATION_ID_SUSPEND - Windows Suspend
RTOS_NOTIFICATION_ID_RESUME - Windows Resume
RTOS_NOTIFICATION_ID_STOP - Uploader requests RTOS Stop
dwTimeout
[in] Timeout in milliseconds
Return

RTE_SUCCESS on success and an error-code on failure. If another thread called
RtosNotificationBreakWait with the corresponding id then RTE_ ERROR_BREAK_WAIT will be
returned.

Comment

If this function is called the RTOS VM will notify the application about the corresponding event. The
normal event handling in the RTOS VM will be blocked until the application calls the appropriate
RtosNotificationDone() routine. For example if the application waits for the BSOD event then Windows
will not enter its normal BSOD handling until RtosNotificationDone(RTOS_NOTIFICATION_ID_BSOD)
is called.

10.10.2024 Page 84/205

10.1.9.2 RtosNotificationDone
Acknowledge event handling.

UINT32 RtosNotificationDone (

UINT32 dwNotificationld)
Parameter
dwNotificationld
[in] Notification identifier. The following notification identifiers exist:

RTOS_NOTIFICATION_ID_BSOD - Windows BSOD
RTOS_NOTIFICATION_ID_SUSPEND - Windows Suspend
RTOS_NOTIFICATION_ID_RESUME - Windows Resume
RTOS_NOTIFICATION_ID_STOP - Uploader requests RTOS Stop

Return

RTE_SUCCESS on success and an error-code on failure.

Comment
Tell the RTOS VM that the corresponding event was processed by the application and the RTOS VM
can continue its normal event handling.

10.1.9.3 RtosNotificationBreakWait
Continue the thread which is waiting for the specified event.

UINT32 RtosNotificationBreakWait (

UINT32 dwNotificationld)
Parameter
dwNotificationld
[in] Notification identifier. The following notification identifiers exist:

RTOS_NOTIFICATION_ID_BSOD - Windows BSOD
RTOS_NOTIFICATION_ID_SUSPEND - Windows Suspend
RTOS_NOTIFICATION_ID_RESUME - Windows Resume
RTOS_NOTIFICATION_ID_STOP - Uploader requests RTOS Stop

Return

RTE_SUCCESS on success and an error-code on failure.

Comment
In case a thread is waiting for the given notification id it will immediately return to the application. The
caller then will get a return value of RTE_ERROR_BREAK_WAIT.

10.1.94 BSOD handling example

DWORD dwRes;

dwRes = RtosNotificationWait (RTOS NOTIFICATION ID BSOD, RTOS WAIT INFINITE);
if (dwRes == RTE SUCCESS)
{
// Handle the BSOD situation!
/71
// Now enter normal BSOD handling (the RTOS will be stopped now)
RtosNotificationDone (RTOS NOTIFICATION ID BSOD) ;

10.10.2024 Page 85/205

10.1.9.5 RtosNotificationExCreate
Create a natification object to wait for specific notification(s).

UINT32 RtosNotificationExCreate (

UINT32 dwMaskWait,
RTOSLIB_HANDLE* phObject)
Parameter
dwMaskWait
[in] Mask of notifications to be notified. The following values exist (can be combined):

RTOSNOTIFICATION_MASK_VMFLOADED - VMF was loaded
RTOSNOTIFICATION_MASK_VMFUNLOAD - VMF will be unloaded
RTOSNOTIFICATION_MASK_VMFSUSPEND - VMF will be suspended
RTOSNOTIFICATION_MASK_VMFRESUMED - VMF was resumed
RTOSNOTIFICATION_MASK_OSSTARTED - OS was started
RTOSNOTIFICATION_MASK_OSSTOP - OS will be stopped
RTOSNOTIFICATION_MASK_OSSUSPEND - OS will be suspended
RTOSNOTIFICATION_MASK_OSRESUMED - OS was resumed
RTOSNOTIFICATION_MASK_OSBSOD - Windows BSOD

phObject

[out] Pointer to receive a RTOSLIB_HANDLE object (notification-ex).

Return
RTE_SUCCESS on success and an error-code on failure.

Comment

The returned handle can be used with the generic object functions.

From the moment the handle all notifications will be received and must be confirmed by calling
RtosNotificationExWait() again or closing the handle.

Ther Uploader for example will be blocked if an application registered for VMF load notification but did
not confirm the notification after it was notified.

10.10.2024 Page 86/205

10.1.9.6 RtosNotificationExWait
Wait for a notification.

UINT32 RtosNotificationExWait (

RTOSLIB_HANDLE hObject,
PRTOS_NOTIFICATION_INFO pinfo,
UINT32 dwTimeoutMs)
Parameter
hObject
[in] Notification handle
pinfo

[out] Pointer to a RTOS_NOTIFICATION_INFO structure. Its dwSize must be initialized to
sizeof(RTOS_NOTIFICATION_INFO)
dwTimeoutMs
[in] Timeout in milliseconds

Return
RTE_SUCCESS on success and an error-code on failure.

Comment

The function will return on timeout or when a notification occurred.

After a notification occurred it must be confirmed by calling RtosNotificationExWait again or closing the
handle so the process can continue.

For any OS specific notification (RTOSNOTIFICATION_MASK_OS...)
RTOS_NOTIFICATION_INFO.dwOsld contains the ID of the related OS.

Additionally should be pointet out that when VMF is being unloaded it is possible that
RTOSNOTIFICATION_MASK_VMFUNLOAD is received before
RTOSNOTIFICATION_MASK_OSSTOP!

10.1.9.1 RtosNotificationExBreakWait
This is a synonym for RtosObjectBreakWait. See RtosObjectBreakWait for details.

UINT32 RtosNotificationExBreakWait (
RTOSLIB_HANDLE hObject)

10.1.9.1 RtosNotificationExClose
This is a synonym for RtosObjectClose. See RtosObjectClose for details.

UINT32 RtosNotificationExClose (
RTOSLIB_HANDLE hObject)

10.10.2024 Page 87/205

10.1.10 RTOS Library — uploader API

These functions are provided only for the Windows version of the RTOS Library. It is related to starting
and stopping the RTOS.

10.1.10.1 SetOutputBuffer

The Uploader tool will internally generate null-terminated ANSI-string messages. If the user application
wants to get these messages it has to tell the Uploader where to store these messages.
If the message buffer is full no further messages will be stored (no wrap).

UINT32 SetOutputBuffer (

VOID* pvOutputBuffer,
UINT32 dwsSize)
Parameter
pvOutputBuffer
[in] Pointer to the buffer where ANSI string messages shall be stored.
dwSize

[in] Size of the buffer.

Return
RTE_SUCCESS on success and an error-code on failure.

Comment
This function has been superseded by RtosSetOutputPrintf() to ensure synchronized output and solve
buffer limitation problems.

10.1.10.2 RtosSetOutputPrintfA

The Uploader tool will internally generate messages. If the user application wants to get these
messages it can register a printf - callback function.

UINT32 RtosSetOutputPrintfA(
RTOSLIB_PFN_PRINTF_A pfnPrintfA)

Parameter
pfnPrintfA
[in] Pointer to a ANSI printf callback function of type
INT32 (RTOSLIB_CALLCONYV *RTOSLIB_PFN_PRINTF_A)(const CHAR *szFormat,

)

Return
RTE_SUCCESS on success and an error-code on failure.

Comment

The macro RtosSetOutputPrintf can be used to call RtosSetOutputPrintfW if UNICODE is defined and
RtosSetOutputPrintfA if not.

The function does not require RtosLiblnit to be called.

10.10.2024 Page 88/205

10.1.10.1 RtosSetOutputPrintfw

The Uploader tool will internally generate messages. If the user application wants to get these
messages it can register a printf - callback function.

UINT32 RtosSetOutputPrintfW(
RTOSLIB_PFN_PRINTF_W pfnPrintfW)

Parameter
pfnPrintfw
[in] Pointer to a UNICODE printf callback function of type
INT32 (RTOSLIB_CALLCONYV *RTOSLIB_PFN_PRINTF_W)(const WCHAR
*wszFormat, ...);

Return
RTE_SUCCESS on success and an error-code on failure.

Comment

The macro RtosSetOutputPrintf can be used to call RtosSetOutputPrintfW if UNICODE is defined and
RtosSetOutputPrintfA if not.

The function does not require RtosLiblnit to be called.

10.1.10.2 RtosStartA
Upload and start the RTOS image.

UINT32 RtosStartA (
const CHAR* szlmageName,
const CHAR* szConfigFile)

Parameter
szlmageName
[in] Path and filename of the RTOS image file.
szConfigFile
[in] Path and filename of the RTOS configuration file. The RTOS started is described in
section [Rtos].

Return
RTE_SUCCESS on success and an error-code on failure.

Comment

The macro RtosStart can be used to call RtosStartW if UNICODE is defined and RtosStartA if not.
RtosStartA internally calls RtosStartExA(szimageName, szConfigFile, 0)

See RtosStartExA.

10.10.2024 Page 89/205

.|
10.1.10.3 RtosStartw

Upload and start the RTOS image.

UINT32 RtosStartW (
const WCHAR* wszlmageName,
const WCHAR* wszConfigFile)

Parameter
wszimageName
[in] Unicode path and filename of the RTOS image file.
wszConfigFile
[in] Unicode path and filename of the RTOS configuration file. The RTOS started is
described in section [Rtos].

Return
RTE_SUCCESS on success and an error-code on failure.

Comment

The macro RtosStart can be used to call RtosStartW if UNICODE is defined and RtosStartA if not.
RtosStartW internally calls RtosStartExW(wszlmageName, wszConfigFile, 0)

See RtosStartExA.

10.10.2024 Page 90/205

10.1.10.4 RtosStartExA
Upload and start the RTOS image.

UINT32 RtosStartExA (

const CHAR* szImageName,

const CHAR* szConfigFile,

UINT32 dwOsld)
Parameter

szlmageName
[in] Path and filename of the RTOS image file.

szConfigFile
[in] Path and filename of the RTOS configuration file.
dwOsld
[in] OS ID of the RTOS to be started. Depending on the ID the RTOS started is described
in section:
0: [Rtos]
1: [Rtos1]
2: [Rtos2]
Return

RTE_SUCCESS on success and an error-code on failure.

Comment
The Uploader tool acts as the RTOS bootloader. It can handle different situations:

1) Load VMF and start a RTOS
Call using szImageName, szConfigFile, dwOslId.
This will stop any running RTOS, unload the VMF, load VMF again with values from
szConfigFile and start RTOS szlmageName.

2) Load VMF but start no RTOS
Call using szConfigFile (szimageName=NULL, dwOsld will be ignored).
This will stop any running RTOS, unload the VMF and load VMF again with values from
szConfigFile but not start any RTOS.

3) Do not load VMF but start RTOS
Call using szImageName, dwOsld (szConfigFile=NULL).
This will start or restart the RTOS with the given dwOsld but not load or reload th VMF.
This function will fail if no VMF is loaded (1 or 2 was not called before).

Start RTOS means this function will copy the RTOS image file into a memory area not used by
Windows and then call the boot entry point of the RTOS.

The macro RtosStartEx can be used to call RtosStartExW if UNICODE is defined and RtosStartExA if
not.

The config file string has the format "'f1' <options>".

o fl use this file as config file
Possible options are:
o /vmf'f2' use f2 as VMF binary (default is vmf.bin)

“ ”

For example “c:\MyOs.config’ /vmf ‘c:\MyVmf.bin’” uses the configuration file “c:\MyOs.config” and the
VMF binary “c:\MyVmf.bin”.

Load VMF and start OS:
e RtosStartExA(“c:\MyOs.bin”, “c:\MyOs.config’ /vmf ‘c:\MyVmf.bin’”, 0);
e RtosStartExA(“c:\\MyOs.bin”, “c:\MyOs.config”, 0);
Load VMF but do not start OS:
e RtosStartExA(NULL, “c:\MyOs.config’ /vmf ‘c:\MyVmf.bin™”, 0);
e RtosStartExA(NULL, “c:\\MyOs.config”, 0);
Start OS (VMF must already be loaded):
e RtosStartExA(“c:\\MyOs.bin”, NULL, 0);

Remarks:
- Pay attention to the single and double quotation marks!
- On a 64bit system using Windows 8 or newer only a 64bit application can call this function!

10.10.2024 Page 91/205

10.1.10.5 RtosStartExW
Upload and start the RTOS image.

UINT32 RtosStartExW (
const WCHAR* wszlmageName,
const WCHAR* wszConfigFile,
UINT32 dwOsld)

Parameter
wszimageName
[in] Unicode path and filename of the RTOS image file.
wszConfigFile
[in] Unicode path and filename of the RTOS configuration file.
dwOsld
[in] OS ID of the RTOS to be started. Depending on the ID the RTOS started is described
in section:
0: [Rtos]
1: [Rtos1]
2: [Rtos2]

Return
RTE_SUCCESS on success and an error-code on failure.

Comment

See RtosStartExA()

The macro RtosStartEx can be used to call RtosStartExW if UNICODE is defined and RtosStartExA if
not.

10.1.10.6 RtosStop
Stop all RTOS operation and unload the VMF.

UINT32 RtosStop (VOID)

Parameter

Return
RTE_SUCCESS on success and an error-code on failure.

Comment
All RTOS will be stopped and VMF will be unloaded.

10.10.2024 Page 92/205

10.1.10.7 RtosStopEx
Stop the RTOS operation without unloading the VMF.

UINT32 RtosStopEx (
UINT32 dwOsld)

Parameter
dwOsld
[in] OS ID of the RTOS to be stopped.

Return
RTE_SUCCESS on success and an error-code on failure.

Comment
The RTOS will be stopped but VMF will not be unloaded.

__|]
10.1.10.8 RtosRunning

Determine if the RTOS is running.
BOOL RtosRunning (VOID)

Parameter

Return
TRUE if the RTOS is running, FALSE if not.

Comment

This function will return the state of RTOS with Osld 0 only.

__|]
10.1.10.9 RtosRunningEx

Determine if the RTOS is running.

UINT32 RtosRunningEx (

UINT32 dwOsld
BOOL *pblsRunning)
Parameter
dwOsld
[in] OS ID of the RTOS to be queried.
pblsRunning

[out] contains TRUE if the RTOS is running, FALSE if not.

Return
RTE_SUCCESS on success and an error-code on failure.

Comment

10.10.2024 Page 93/205

10.1.10.10 RtosVmflsLoaded
Determine if the VMF is loaded.

UINT32 RtosVmflsLoaded (VOID)

Parameter

Return
RTE_SUCCESS if VMF is loaded.
RTE_ERROR_VMF_NOTREADY if VMF is not loaded.

Comment

10.1.10.11 RtosVmlisMapped
Determine if memory is mapped into a VM.

UINT32 RtosVmIsMapped (VOID)

Parameter

Return
RTE_SUCCESS if no memory is mapped.
RTE_ERROR_VM_MAPPED if memory is mapped.

Comment

10.10.2024 Page 94/205

10.1.11 RTOS Library — result value

10.1.11.1 RtosResultGetTextA
Get a message text for a result value.

UINT32 RtosResultGetTextA (

UINT32 dwResult,
CHAR* szText,
UINT32* pdwSizelnBytes)
Parameter
dwRteResult
[in] Result value to query text for
szText

[out] String buffer to receive the result message text
pdwSizelnBytes

[in] Length of string buffer in bytes

[out] Number of bytes used for message text

Return
RTE_SUCCESS on success and an error-code on failure.

Comment

A text for a result value can be queried using “RtosResultGetText”.

The macro RtosResultGetText can be used to call RtosResultGetTextW if UNICODE is defined and
RtosResultGetTextA if not.

The function does not require RtosLiblnit to be called.

10.1.11.2 RtosResultGetTextW
Get a message text for a result value.

UINT32 RtosResultGetTextW (

UINT32 dwResult,
WCHAR* wszText,
UINT32* pdwSizelnBytes)
Parameter
dwRteResult
[in] Result value to query text for
wszText

[out] String buffer to receive the result message text
pdwSizelnBytes

[in] Length of string buffer in bytes

[out] Number of bytes used for message text

Return
RTE_SUCCESS on success and an error-code on failure.

Comment

A text for a result value can be queried using “RtosResultGetText”.

The macro RtosResultGetText can be used to call RtosResultGetTextW if UNICODE is defined and
RtosResultGetTextA if not.

The function does not require RtosLiblnit to be called.

10.10.2024 Page 95/205

.|
10.1.11.3 RtosResultGetModuleA

Get a module name for a result value.

UINT32 RtosResultGetModuleA (

UINT32 dwResult,
CHAR* szText,
UINT32* pdwsSizelnBytes)
Parameter
dwRteResult
[in] Result value to query module name for
szText

[out] String buffer to receive the result module name
pdwSizelnBytes

[in] Length of string buffer in bytes

[out] Number of bytes used for module name

Return
RTE_SUCCESS on success and an error-code on failure.

Comment

A module name for a result value can be queried using “RtosResultGetModule”.

The macro RtosResultGetModule can be used to call RtosResultGetModuleW if UNICODE is defined
and RtosResultGetModuleA if not.

The function does not require RtosLiblnit to be called.

|
10.1.11.4 RtosResultGetModuleW

Get a module name for a result value.

UINT32 RtosResultGetModuleW (

UINT32 dwResult,
WCHAR* wszText,
UINT32* pdwSizelnBytes)
Parameter
dwRteResult
[in] Result value to query text for
wszText

[out] String buffer to receive the result module name
pdwSizelnBytes

[in] Length of string buffer in bytes

[out] Number of bytes used for module name

Return
RTE_SUCCESS on success and an error-code on failure.

Comment

A module name for a result value can be queried using “RtosResultGetModule”.

The macro RtosResultGetModule can be used to call RtosResultGetModuleW if UNICODE is defined
and RtosResultGetModuleA if not.

The function does not require RtosLiblnit to be called.

10.10.2024 Page 96/205

10.1.12 RTOS Library — licensing

The main licensing functionality is only supported through the Windows part of the RTOS Library. On
the real-time parts of the RTOS Library some of these routines are not implemented.

10.1.12.1 RtosLicense
Setting, getting and removing of a license will be handled through this routine.

UINT32 RtosLicense (

UINT32 dwAction
VOID* pvData
UINT32* pdwsSizelnBytes)
Parameter
dwAction
[in] License action identifier. See comment for details.
pvData
[in] Supplied data (LicenselD) for a specific “set” action
[out] Requested data by specific “get” action

- NULL if action = remove license

pdwSizelnBytes
[in] Size of supplied data for a specific “set” action
[out] Size of requested data for a specific “get” action
- NULL if action = remove license

Return
RTE_SUCCESS on success and an error-code on failure. Calling this routine on the real-time part of

the RTOS Library, a RTE_ERROR_NOT_IMPL will be returned.

Comment
This function performs actions for setting, getting and removing of a license.

dwAction pvData Description

RTOS LICENSE ACTION _SET A [IN] License string Set license

RTOS_LICENSE_ACTION_SET W [IN] License string As before, but UNICODE instead of ANSI

RTOS_LICENSE_ACTION_REMOVE - Remove license

RTOS_LICENSE _ACTION_GET A [OUT] License string Get license

RTOS LICENSE_ACTION_GET W [OUT] License string As before, but UNICODE instead of ANSI

RTOS LICENSE_ACTION_REQUESTFILE_A [IN, OPT] Filename Write request file

RTOS LICENSE_ACTION_REQUESTFILE W [IN, OPT] Filename As before, but UNICODE instead of ANSI

RTOS LICENSE_ACTION_SETFILE_A [IN] Filename Read license from file

RTOS LICENSE_ACTION_SETFILE W [IN] Filename As before, but UNICODE instead of ANSI

RTOS LICENSE_ACTION_GETFILE_A [IN, OPT] Filename Write license to file

RTOS LICENSE_ACTION_GETFILE W [IN, OPT] Filename As before, but UNICODE instead of ANSI

RTOS_LICENSE_ACTION_PARSE_A [IN] Command + CmdData Parse data for action and its params
[OUT] see other [OUT] Actions: /set, /remove, /get, /requestfile, ...

RTOS_LICENSE_ACTION_PARSE_W [IN] Command + CmdData As before, but UNICODE instead of ANSI
[OUT] see other [OUT]

Notes:
1) If parameter 2 is NULL parameter 3 must also be NULL - otherwise an error will be returned!
2) If not enough memory is supplied for the “get” action only a part of the license ID might be
returned!
3) When using the “parse” action for “/get” the input buffer will also be used for the output. This
requires the buffer size to be the maximum of input and output.
4) The RtosLicense parse action can be addressed using the Uploader parameter “/lic”.
Examples:
- RtosUpload.exe /lic "/requestfile 'C:\MyFile.HwldReq™
- RtosUpload.exe /lic "/setfile 'C:\MyFile.HwlIdLic™
10.10.2024 Page 97/205

10.1.13 RTOS Library —file server

Please check chapter 10.1.14 “RTOS Library — files” for configuration and further details.

10.1.13.1 RtosFileServerStart
Start the file server for remote file handling.

UINT32 RtosFileServerStart (VOID)

Parameter

Return
RTE_SUCCESS on success and an error-code on failure.

Comment
This function is called by default on
- Windows (by RtosService)
RtosFileServer is currently only supported by Windows.

10.1.13.2 RtosFileServerStop
Stop the file server for remote file handling.

UINT32 RtosFileServerStop (VOID)

Parameter

Return
RTE_SUCCESS on success and an error-code on failure.

Comment
This function is called by default on
- Windows (by RtosService)
RtosFileServer is currently only supported by Windows.

10.10.2024 Page 98/205

10.1.14 RTOS Library —files
The RtosLib supports file handling routines to access files on all supported platforms in a uniform way.

The RtosLib files can operate in 2 different modes. The default mode accesses the files remotely on
the file system of the Windows OS with a file server module of RtosService.

HINT: On CE or RTOS-32 platforms using the new native file system drivers should fits on the most
cases and direct access to the RtosFile-API should not be needed.

In the other case the files are supplied via shared memory and acts mainly like memory-mapped files.
This so-called SHM-mode has some restrictions which are discussed below.

SHM File Mode: To access a file through a shared memory, the file name path must contain the prefix
//SHM/<FILENAME>.
The file name must correspond to the shared memory name (case-sensitive!)

Example:
SHM-Name: TestFileXyZ.txt
SHM-FileName: //SHM/TestFileXyZ.txt

A corresponding shared memory must be defined in the config file. The memory can be initialized with
zeros, without anything or with an existing file from the file system on Windows. For further details
about shared memories prepared for file handling please look at chapter 5.7 Multi Purpose Shared
Memory.

Example:

[SharedMemory\TestFileXyZ.txt]
"Name"="TestFileXyZ.txt"
"Description"="TestFile for SHM file access"
"Size"=dword:0
"File"="C:\Temp\TestFileForShmAccess.txt"
"Initialize"=dword:2
"Save"=dword:1
"AccessDefault"=dword:1

[SharedMemory\TestFileXyZ.txt\AccessModes]

Limitations: The SHM file depends on a shared memory; therefore it's not possible to increase the
size of a SHM file.

The initial size of the shared memory is the maximum possible file size!

Due to technical reasons it's not possible to rename or remove a SHM file with the RtosFile API!

Remote File Mode: Accessing a file remote is realized by the file server module of RtosService. The
default operation directory of the file server is %RTE_ROOT%\RtFiles. If not yet available, it will be
created at startup. All file operations are restricted to this directory and its subdirs by default.

The config file settings regarding the file server are OS specific and have to be made in an OS section
like [Host\FileServer] or [Rtos\FileServer]. Only a file server under Windows is supported at moment!

Entry Name Type Description
MaxOpenFiles dword Etirgber of concurrently possible open RtosFiles. Default

The home directory of the file server. If no path is
specified for a file, all file operations will go to this
directory. If directory doesn’t exsist, it will be created at
first access. Default: "%RTE_ROOT%\RtFiles"

HomeDir string

This value restricts the access of the file server to its
RestrictedToHomeDir dword | home directory and its subdirs. Every file access outlying
the home directory will return an error. Default: TRUE

10.10.2024 Page 99/205

Entry Name Type Description

This defines the task priority for the fileserver threads. The
values are OS specific. The delivered config file contains

orit OS specific information about lowest and highest possible
TaskPriority dword | priority.

If the entry does not exist then the OS uses an OS
specific priority compatible to older versions.

0 Task will not be started
TaskEnabled dword |1 Task will be started
omitted = 1 = Task will be started

0 ‘AccessDenied’ message will be shown
SuppressAccessDeniedMsg dword | 1 Message will be suppressed
omitted = 0 = Message will be shown

0 No (internal) log messages of the file server will be
logged.

LogLevel dword |1 Internal log messages of file server will be logged at the
Windows event log.

omitted = 0 = no log messages will be logged

Limitations: Currently 10 simultaneously open remote files are supported. This value could be
adjusted with corresponding entry MaxOpenFiles in config file. See above table.
Scan functionality is currently not available for remote files.

Caution: The file handles of RtosFile 6.0 APl and RtosFile 6.1 API could not be mixed generally, if not
stated otherwise.

Generic functions like RtosFileClose, RtosFileRead, RtosFileWrite, etc can operate on various kinds of
handles.

Ways of accessing the file API:

For easier access to the RtosFile API, 3 different ways are supported. For some RTOS'’s (CE- or
RTOS-32-based) we provide native file system driver, which will call the appropriate RtosFile functions
and second calling the RtosFile API directly or as (partly deprecated) third method through supplied
rtosstdio.h.

On CE- or RTOS-32-based products the default case is using the supplied native file system drivers,
which will hide the complete RtosFile-API and native fopen() or CreateFile() calls can be used.

The following rtosstdio.h example should be considered deprecated (on CE- and RTOS-32-based
projects) and should be only used for legacy reasons on these platforms.
Porting to native stdio.h on these platforms should be possible without much hassle.

The rtosstdio.h remaps default stdio calls like fopen() to the native RtosFile API. To use the remapping
functionality of rtosstdio.h the include file must be added into the source file as the last include.

Minimal example:
// other includes...
// #include

// last include:
#include <rtosstdio.h>

int main(int argc, char *argvl[])
{
FILE* hFile = NULL;

RtosLibInit () ;

// Create file handle

hFile = fopen("//SHM/TestFile.txt"™, "rw");
if(NULL == hFile)

10.10.2024 Page 100/205

// error

if(NULL != hFile)

{
if(fclose(hFile) !'= 0)
{

// error
}
}

RtosLibDeinit () ;

return 0;

}

The following functions are supported:
fopen(); fclose();

fwrite(); fread(); fputs(); fgets(); fputc(); fgetc(); getc(); putc();
fflush(); feof(); rewind(); fseek(); fsetpos(); fgetpos(); ftell();
ferror(),; clearerr();

setbuf () setvbuf (

;)7
fprintf (); viprintf();
fscanf (); vfscanf ()

’

Supported only by remote file mode (not available in SHM mode)
tmpfile(); remove(); rename();

The following functions are NOT supported:
freopen(); ungetc(); tmpnam();

For Debugging and/or Logging purposes the rtosstdio.h exposes the underlying returned error
code through a global error variable:

/* To be used in code to determine the underling RTE ERROR if the function

call fails. */
extern UINT32 rte errno = RTE SUCCESS;

10.10.2024 Page 101/205

10.1.14.1 RtosFileCreateA

This is the main function to open an existing file or create a new file. Both remote files as well as SHM
files are supported.

UINT32 RtosFileCreateA (

const CHAR* szName,
const CHAR* szOptions,
RTOSLIB_HANDLE* phFileCreate)
Parameter
szName
[in] Name of the file
szOptions
[in] File create options. See comment.

phFileCreate
[out] Pointer to receive a RTOSLIB_HANDLE object (file).

Return
RTE_SUCCESS on success and an error-code on failure.

Comment

r’ read: Open file for read operations. The file must exist.

‘w” write: Create an empty file for write operations. If the file yet exists, its
contents will be discarded and the file is used like a fresh new file.

“a” append: Open the file for write operations at the end of file, expanding it.

Reposition operations (RtosFileSeek, RtosFileRewind, etc) are ignored. If the
file doesn’t exist, it will be created.

“r+” read/update: Open file for read/write operations. The file must exist.

w+” write/update: Create an empty file for read/write operations. If the file yet
exists, its contents will be discarded and the file is used like a fresh new file.

a+ append/update: Open the file for read/write operations with write
operations at the end of the file, expanding it. Reposition operations
(RtosFileSeek, RtosFileRewind, etc) affects only the following read
operations, but write operations move the position back to the end of file. If
the file doesn’t exist, it will be created.

‘b” binary: File should be open as binary file.

‘v’ text: File should be open as text file.

[T TR)

The first character of the option string must be either “r”, “w” or “a@”. The next and further character
could be one of the optional “b” or “t” or sign “+” with resulting compound modes: “rb”, “rt”, “wb”, “wt”,
“ab”’ Hat!! and ‘Ir+b”’ Hr+t!!’ “W+b"7 ”W+t”7 “a+bl!, “a+t!! Or ﬂrb+!!, Hrt+!!’ “Wb+", "Wt+”7 “ab+”’ ﬂat!!.

With errors in format string the function will fail with RTE._ ERROR_FILE INVALID CREATE OPTS
(Ox4461).

The macro RtosFileCreate can be used to call RtosFileCreateW if UNICODE is defined and
RtosFileCreateA if not.
|

10.1.14.2 RtosFileCreateW
See RtosFileCreateA

UINT32 RtosFileCreateW (

const WCHAR* wszName,
const WCHAR* wszOptions,
RTOSLIB_HANDLE* phFileCreate)

10.10.2024 Page 102/205

10.1.14.3 RtosFileClose
This is a synonym for RtosObjectClose. See RtosObjectClose for details.

UINT32 RtosFileClose (
RTOSLIB_HANDLE hObject)

10.1.14.4RtosFileRead
This is a synonym for RtosObjectRead. See RtosObjectRead for details.

UINT32 RtosFileRead(

RTOSLIB_HANDLE hObject,

UINT8 *pBuffer,
UINT32 dwBufferSize,
UINT32 *ndwBytesRead,
UINT32 dwTimeoutMs)

10.1.14.5 RtosFileWrite
This is a synonym for RtosObjectWrite. See RtosObjectWrite for detalils.

UINT32 RtosFileWrite(

RTOSLIB_HANDLE hObject,

const UINTS8 *pBuffer,

UINT32 dwBufferSize,
UINT32 *ndwBytesWritten,
UINT32 dwTimeoutMs)

10.1.14.6 RtosFileReadStrA
This function read “string” data into an ANSI string.

UINT32 RtosFileRead StrA(

RTOSLIB_HANDLE hFileCreate,
CHAR *szStr,
UINT32 dwNum,
UINT32 *pdwNumOfCharRead)
Parameter
hFileCreate
[in] Object handle returned from RtosFileCreate()
szStr
[out] String buffer to receive the data read
dwNum
[in] Length of string buffer in characters
pdwNumOfCharRead

[out] Number of characters read into the string buffer

Return
RTE_SUCCESS on success and an error-code on failure.

If the return value is RTE_SUCCESS but *pdwNumOfCharRead returned zero, then the stream should
be checked for eof. In that case the szStr remains unchainged.

Comment
If there is no data to be read the function will return and the *pdwNumOfCharRead will contain zero.

10.10.2024 Page 103/205

If data was read the function will return as soon as (dwNum-1) characters have been read or either a
newline or the end-of-file is reached or the read string buffer is full, whichever happens first.

A newline character is considered as a valid character and is included into the returned string.
A terminating null character is appended automatically.
__|]

10.1.14.7 RtosFileRead Strw
See RtosFileReadStrA.

UINT32 RtosFileRead Strw(

RTOSLIB_HANDLE hFileCreate,

WCHAR *wszStr,

UINT32 dwNum,

UINT32 *ndwNumOfCharRead)

10.1.14.8 RtosFileFlush
This function performs a flush on the remote file.

UINT32 RtosFileFlush (

RTOSLIB_HANDLE hFile)
Parameter
hFile
[in] Object handle returned from RtosFileCreate() or RtosFileCreateEx()
Return

RTE_SUCCESS on success and an error-code on failure.
Comment

This function is only supported on the remote file mode. It performs a flush on the real file at the file
server.

10.10.2024 Page 104/205

10.1.14.9 RtosFileEof
This function returns either the RTOSFILE_EOF indicator, if end of file is reached or otherwise 0.

UINT32 RtosFileEof (

RTOSLIB_HANDLE hFileCreate,
INT32* pnEof)
Parameter
hFileCreate
[in] Object handle returned from RtosFileCreate()
pnEof

[out] Pointer to receive the RTOSFILE_EOF indicator.

Return
RTE_SUCCESS on success and an error-code on failure.

Comment

Check returned *pnEof value with define RTOSFILE_EOF to indicate, if EoF is reached.

10.1.14.10 RtosFileRewind
This function performs a rewind at the file. It sets the position indicator of the file to the beginning.

UINT32 RtosFileRewind (

RTOSLIB_HANDLE hFileCreate)
Parameter
hFileCreate
[in] Object handle returned from RtosFileCreate()
Return

RTE_SUCCESS on success and an error-code on failure.

Comment

10.10.2024 Page 105/205

10.1.14.11 RtosFileSeek
This function returns either the RTOSFILE_EOF indicator, if end of file is reached or otherwise 0.

UINT32 RtosFileSeek (

RTOSLIB_HANDLE hFileCreate,
INT64 gnOffset,
INT32 nOrigin)
Parameter
hFileCreate
[in] Object handle returned from RtosFileCreate()
gnOffset
[in] Sets the position indicator relative to this offset from origin parameter.
norigin
[in] Defines the origin for the offset. Valid values see comment.
Return

RTE_SUCCESS on success and an error-code on failure.

Comment

Origin ID Description

RTOSFILE_SEEK_SET Sets the position indicator to the beginning of
the file. If gnOffset has a positive value, the
position indicator will be set to this offset from
the beginning.

RTOSFILE_SEEK_CUR Uses the gnOffset parameter to move
position indicator from current position of the
offset value.

RTOSFILE_SEEK_END Sets the position indicator to the end of the

file. The end of file means after the last char.
In SHM file mode, this means, that the
position indicator is beyond the valid memory
range!

If gnOffset has a negative value, the position
indicator will be set to this offset from the end
of file towards to the beginning.

10.1.14.12 RtosFileGetPos
This function returns the current position in file.

UINT32 RtosFileGetPos (

RTOSLIB_HANDLE hFileCreate,
INT64* pgnPos)
Parameter
hFileCreate
[in] Object handle returned from RtosFileCreate()
pgnPos

[out] Pointer to receive the current position indicator.

Return
RTE_SUCCESS on success and an error-code on failure.

Comment

10.10.2024 Page 106/205

10.1.14.13 RtosFileSetPos
This function sets the current position in file.

UINT32 RtosFileSetPos (

RTOSLIB_HANDLE hFileCreate,
INT64 gnPos)
Parameter
hFileCreate
[in] Object handle returned from RtosFileCreate()
qgqnPos
[in] Desired value of position indicator.
Return

RTE_SUCCESS on success and an error-code on failure.
Comment

10.1.14.14 RtosFileSize
This function returns the current size of file.

UINT32 RtosFileSize (

RTOSLIB_HANDLE hFile,
UINT64* pgwSize)
Parameter
hFile
[in] Object handle returned from RtosFileCreate() or RtosFileCreateEx()
pgqwSize

[out] Pointer to receive the current file size.

Return
RTE_SUCCESS on success and an error-code on failure.

Comment

10.10.2024 Page 107/205

10.1.14.15 RtosFileError
This function returns the current error indicator of file.

UINT32 RtosFileError (

RTOSLIB_HANDLE hFileCreate,
INT64* pgnError)
Parameter
hFileCreate
[in] Object handle returned from RtosFileCreate()
pgnError

[out] Pointer to receive the current error indicator.

Return
RTE_SUCCESS on success and an error-code on failure.

Comment

10.1.14.16 RtosFileClearError
This function performs resets to both the error and the eof indicator of the file.

UINT32 RtosFileClearError (

RTOSLIB_HANDLE hFileCreate)
Parameter
hFileCreate
[in] Object handle returned from RtosFileCreate()
Return

RTE_SUCCESS on success and an error-code on failure.
Comment

10.1.14.17 RtosFileCreateTmpfile
Creates a temporary binary file with a flename guaranteed to be different from any other existing file.

UINT32 RtosFileCreateTmpfile (
RTOSLIB_HANDLE* phFileCreate)

Parameter
phFileCreate
[out] Pointer for receive a RTOSLIB_HANDLE object (file) of a temporary file.

Return
RTE_SUCCESS on success and an error-code on failure.

Comment

This function is not supported on SHM file mode!
Closing this file handle with RtosFileClose() will delete the temporary file automatically.

10.10.2024 Page 108/205

10.1.14.18 RtosFileRemoveA
Removes a file with the specified name.

UINT32 RtosFileRemoveA (

const CHAR* szName)
Parameter
szName
[in] Name of the file to be removed
Return

RTE_SUCCESS on success and an error-code on failure.
Comment
The macro RtosFileRemove can be used to call RtosFileRemoveW if UNICODE is defined and

RtosFileRemoveA if not.
This function is not supported on SHM file mode!

10.1.14.19 RtosFileRemoveW
See RtosFileRemoveA

UINT32 RtosFileRemoveW (
const WCHAR* wszName)

10.1.14.20 RtosFileRenameA
Rename a file with the specified name.

UINT32 RtosFileRenameA (

const CHAR* szOldName,
const CHAR* szNewName)
Parameter
szOldName
[in] Name of the file to be renamed
szNewName
[in] New name of the file
Return

RTE_SUCCESS on success and an error-code on failure.

Comment

The macro RtosFileRename can be used to call RtosFileRenameW if UNICODE is defined and
RtosFileRenameA if not.

This function is not supported on SHM file mode!

10.1.14.21 RtosFileRenameW
See RtosFileRenameA

UINT32 RtosFileRenameW (

const WCHAR* wszOIldName,
const WCHAR* wszNewName)

10.10.2024 Page 109/205

10.1.14.22 RtosFileSetBuffer
This function sets a local buffer to the file. At moment not supported.

UINT32 RtosFileSetBuffer (

RTOSLIB_HANDLE hFileCreate,
const UINT8* pBuffer,
UINT64 gwBufferSize
INT32 nMode)
Parameter
hFileCreate
[in] Object handle returned from RtosFileCreate()
pBuffer
[in] Pointer to buffer to be set.

gwBufferSize
[in] Size of the supplied buffer.
norigin
[in] Operation mode. Currently don’t care.

Return
RTE_SUCCESS on success and an error-code on failure.

Comment

This function is currently not supported. It will remember the buffer, but no further action will be taken.

10.1.14.23 RtosFilePrintfA
Works sililar to the classic fprinf() function.

UINT32 RtosFilePrintfA (

RTOSLIB_HANDLE hFile,
CHAR* szFormat,
UINT64* pgwCharsWitten,
")
Parameter
hFile
[in] Object handle returned from RtosFileCreate() or RtosFileCreateEx()
szFormat
[in] Format string. All Visual C fprintf() format sequences are supported.
pgwCharsWritten

[out] Pointer to receive how many chars was written.
[in] 0..n additional parameter for the format entries.

Return
RTE_SUCCESS on success and an error-code on failure.

Comment

This function is comparable with the ANSI fprintf() function.

The macro RtosFilePrintf can be used to call RtosFilePrintfW if UNICODE is defined and
RtosFilePrintfA if not.

10.10.2024 Page 110/205

10.1.14.24 RtosFilePrintfW
See RtosFilePrintfA

UINT32 RtosFilePrintfW (

RTOSLIB_HANDLE hFile,

WCHAR* wszFormat,
UINT64* pgwCharsWritten,
o)

10.1.14.25 RtosFileVPrintfA

This function is similar to RtosFilePrintfA . The main difference is the last parameter. This function
expects the parameters for the format string as a va_list. . For futher details see RtosFilePrintfA.

UINT32 RtosFileVPrintfA (

RTOSLIB_HANDLE hFile,

CHAR* szFormat,
UINT64* pgwCharsWritten,
va_list valist)

10.1.14.26 RtosFileVPrintfw
See RtosFileVPrintfA.

UINT32 RtosFileVPrintfW (

RTOSLIB_HANDLE hFile,

WCHAR* wszFormat,
UINT64* pgwCharsWritten,
va_list vaList)

10.10.2024 Page 111/205

10.1.14.27 RtosFileScanfA
Works sililar to the classic fscanf() function.

UINT32 RtosFileScanfA (

RTOSLIB_HANDLE hFileCreate,
CHAR* szFormat,
UINT64* pgwltemsRead,
o)
Parameter
hFileCreate
[in] Object handle returned from RtosFileCreate()
szFormat
[in] Format string. All Visual C fscanf() format sequences are supported.

pgwltemsRead
[out] Pointer to receive how many items could be read.

[in/out] 0..n additional parameter for the format entries.

Return
RTE_SUCCESS on success and an error-code on failure.

Comment
This function is comparable with the ANSI fscanf() function.

The macro RtosFileScanf can be used to call RtosFileScanfw if UNICODE is defined and
RtosFileScanfA if not.
Important: This function is currently not supported on remote files!

In SHM file mode are up to 20 items supported.

10.1.14.28 RtosFileScanfw
See RtosFileScanfA

UINT32 RtosFileScanfW (

RTOSLIB_HANDLE hFileCreate,
WCHAR* wszFormat,
UINT64* pgwlitemsRead,
o)

10.1.14.29 RtosFileVScanfA

This function is similar to RtosFileScanfA . The main difference is the last parameter. This function
expects the parameters for the format string as a va_list. . For futher details see RtosFileScanfA.

UINT32 RtosFileVScanfA (

RTOSLIB_HANDLE hFileCreate,
CHAR* szFormat,
UINT64* pgwltemsRead,
va_list valist)

10.10.2024 Page 112/205

10.1.14.30 RtosFilevVScanfW
See RtosFileVScanfA.

UINT32 RtosFileVScanfW (

RTOSLIB_HANDLE hFileCreate,
WCHAR* wszFormat,
UINT64* pgwltemsRead,
va_list valist)

10.1.14.31 RtosFileOptionSet
This is a synonym for RtosObjectOptionSet. See RtosObjectOptionSet for details.

UINT32 RtosFileOptionSet (

RTOSLIB_HANDLE hObject,
UINT32 dwOptionld,
const UINTS8 *pBuffer,
UINT32 dwBufferSize)

10.1.14.32 RtosFileOptionGet
This is a synonym for RtosObjectOptionGet. See RtosObjectOptionGet for details.

UINT32 RtosFileOptionGet (

RTOSLIB_HANDLE hObject,
UINT32 dwOptionld,
const UINTS8 *pBuffer,
UINT32 dwBufferSize)

10.10.2024 Page 113/205

10.1.15 RTOS Library —files advanced (6.1)

The new file functions from RtE 6.1 on uses the Windows CreateFile()-API on the file server side.
Therefore the returned handles are generally not compatible with RtE 6.0 file handles (fopen()-based)
and could not be mixed, if not stated otherwise.

Generic functions like Close, Read, Write, etc applies to all kind of handles.

General rule: the name of the handle suggests, which handle are allowed.
See following table:

Parameter Name Allowed Handles
hObject All handle types allowed
hFile hFileCreate or hFileCreateEx handles allowed
hFileCreate Only hFileCreate handles allowed
hFileCreateEx Only hFileCreateEx handles allowed
hFind Only hFind handles allowed

Hint: As most of the following functions have equivalent Windows function calls on the file server side,
the main limitation of these native Windows calls applies also to these functions. Please see the
functional equivalent function descriptions at the MSDN.

10.1.15.1 RtosFileCreateExA

This is the main function to open an existing file or create a new file. SHM files are NOT supported.

UINT32 RtosFileCreateEXA (
const CHAR*
UINT32
UINT32
PRTOS_SECURITY_ATTRIBUTES
UINT32
UINT32
RTOSLIB_HANDLE
RTOSLIB_HANDLE*

szFileName,
dwDesiredAccess,
dwShareMode,
IpSecurityAttributes,
dwCreationDisposition,
dwFlagsAndAttributes,
hTemplateFile,
phFileCreateEx)

Parameter
szFileName

[in] Name of the file
dwDesiredAccess

[in] Desired access mode. See comment.
dwShareMode

[in] Shared mode. See comment.
IpSecurityAttributes

[in] Currently only NULL is supported/accepted.

dwCreationDisposition

[in] Creation Disposition. See comment.
dwFlagsAndAttributes
[in] File create flags and attributes. See comment.

hTemplateFile

[in] Currently only NULL is supported/accepted.

phFileCreateEx

[out] Pointer to receive a RTOSLIB_HANDLE object (file).

Return

RTE_SUCCESS on success and an error-code on failure.

Comment

Desired access modes:

Value

Meaning

RTOSFILE GENERIC READ

(0x80000000L) | Read access

10.10.2024

Page 114/205

RTOSFILE GENERIC WRITE (0x40000000L)

Write access

RTOSFILE GENERIC EXECUTE (0x20000000L)

Execute access

RTOSFILE GENERIC ALL (0x10000000L)

All possible access rights

The most commonly used values are RTOSFILE_GENERIC_READ, RTOSFILE_GENERIC_WRITE,
or both (RTOSFILE_GENERIC_READ | RTOSFILE_GENERIC_WRITE).

File shared mode:

Value

Meaning

0 (0x00000000)

Prevents other processes from opening a file
or device if they request delete, read, or write
access.

Enables subsequent open operations on a file

RTOSFILE SHARE READ (0x00000001) -
- - or device to request read access.
RTOSFILE SHARE WRITE (0x00000002) Enable_s subsequent open operations on a file
- - or device to request write access.
RTOSFILE SHARE DELETE (0x00000004) Enable_s subsequent open operations on a file
- - or device to request delete access.
File attributes:
Value Meaning
RTOSFILE ATTRIBUTE READONLY The file is read only. Applications can read the
(0x00000001) file, but cannot write to or delete it.
RTOSFILE ATTRIBUTE HIDDEN The file is hidden. Do not include it in an
(0x00000002) ordinary directory listing.
RTOSFILE ATTRIBUTE SYSTEM The file is part of or used exclusively by an
(0x00000004) operating system.
RTOSFILE_ATTRIBUTE_DIRECTORY The handle that identifies a directory.
(0x00000010)
RTOSFILE ATTRIBUTE ARCHIVE The file should be archived. Applications use
(0x00000020) this attribute to mark files for backup or
removal.
RTOSFILE ATTRIBUTE DEVICE This value is reserved for system use.
(0x00000040)
RTOSFILE_ATTRIBUTE_NORMAL The file does not have other attributes set.
(0x00000080) This attribute is valid only if used alone.
RTOSFILE ATTRIBUTE TEMPORARY The file is being used for temporary storage.
(0x00000100)

RTOSFILE ATTRIBUTE SPARSE FILE
(0x00000200)

A file that is a sparse file.

RTOSFILE ATTRIBUTE REPARSE POINT
(0x00000400)

A file or directory that has an associated
reparse point, or a file that is a symbolic link.

RTOSFILE ATTRIBUTE COMPRESSED
(0x00000800)

A file or directory that is compressed.

RTOSFILE ATTRIBUTE OFFLINE
(0x00001000)

The data of a file is not immediately available.

RTOSFILE ATTRIBUTE NOT CONTENT INDEXED
(0x00002000)

The file or directory is not to be indexed by the
content indexing service.

RTOSFILE ATTRIBUTE ENCRYPTED
(0x00004000)

The file or directory is encrypted.

RTOSFILE ATTRIBUTE VIRTUAL
(0x00010000)

This value is reserved for system use.

File flags:

Value

Meaning

RTOSFILE FLAG WRITE THROUGH
(0x80000000)

Write operations will not go through any
intermediate cache; they will go directly to
disk.

RTOSFILE FLAG NO BUFFERING
(0x20000000)

The file or device is being opened with no
system caching for data reads and writes.

10.10.2024

Page 115/205

RTOSFILE FLAG RANDOM ACCESS
(0x10000000)

Access is intended to be random. The system
can use this as a hint to optimize file caching.

RTOSFILE FLAG SEQUENTIAL SCAN
(0x08000000)

Access is intended to be sequential from
beginning to end. The system can use this as
a hint to optimize file caching.

RTOSFILE FLAG DELETE ON CLOSE
(0x04000000)

The file is to be deleted immediately after all
of its handles are closed, which includes the
specified handle and any other open or
duplicated handles.

RTOSFILE FLAG BACKUP_ SEMANTICS
(0x02000000)

The file is being opened or created for a
backup or restore operation.

RTOSFILE FLAG POSIX SEMANTICS
(0x01000000)

Access will occur according to POSIX rules.

RTOSFILE FLAG SESSION_ AWARE
(0x00800000)

The file or device is being opened with
session awareness.

RTOSFILE FLAG OPEN REPARSE POINT
(0x00200000)

Normal reparse point processing will not
occur; RtosFileCreateEx will attempt to open
the reparse point.

RTOSFILE FLAG OPEN NO RECALL
(0x00100000)

The file data is requested, but it should
continue to be located in remote storage.

Hint:

If the FILE_FLAG_NO_BUFFERING flag is active, then file access buffer addresses for read and write
operations should be physical sector-aligned, which means aligned on addresses in memory that are
integer multiples of the volume's physical sector size.

File creation disposition:

Value Meaning
RTOSFILE CREATE NEW (1) eC;ieS?tes a new file, only if it does not already
RTOSFILE CREATE ALWAYS (2) Creates a new file, always.
RTOSFILE OPEN EXISTING (3) Opens a file or device, only if it exists.
RTOSFILE OPEN ALWAYS (4) Opens a file, always.

RTOSFILE TRUNCATE EXISTING (5)

Opens a file and truncates it so that its size is
zero bytes, only if it exists.

10.1.15.2 RtosFileCreateExW
See RtosFileCreateExA

UINT32 RtosFileCreateEXA (
const WCHAR*
UINT32
UINT32
PRTOS_SECURITY_ATTRIBUTES
UINT32
UINT32
RTOSLIB_HANDLE
RTOSLIB_HANDLE*

wszFileName,
dwDesiredAccess,
dwShareMode,
IpSecurityAttributes,
dwCreationDisposition,
dwFlagsAndAttributes,
hTemplateFile,
phFileCreateEx)

10.1.15.3 RtosFileReadSeek

This is mainly the same as RtosObjectRead. It contains an additional offset parameter for the desired
seek position. See RtosObjectRead for further details.

UINT32 RtosFileRead(
RTOSLIB_HANDLE

10.10.2024

hFileCreateEx,

Page 116/205

UINT8 *pBuffer,

UINT32 dwBufferSize,
UINT32 *ndwBytesRead,
UINT32 dwTimeoutMs,
UINT64 gqwOffset)
Additional Parameter
gwOffset
[in] Desired seek position from which the data should be read. The offset starts from file
begin.
Return

RTE_SUCCESS on success and an error-code on failure.

Comment

10.1.15.4 RtosFileWriteSeek

This is mainly the same as RtosObjectWrite. It contains an additional offset parameter for the desired
seek position. See RtosObjectWrite for further details.

UINT32 RtosFileWrite(

RTOSLIB_HANDLE hFileCreateEx,
const UINTS8 *pBuffer,
UINT32 dwBufferSize,
UINT32 *ndwBytesWritten,
UINT32 dwTimeoutMs,
UINT64 gqwOffset)
Additional Parameter
gqwOffset
[in] Desired seek position from were the data should be write. The offset starts from file
begin.
Return

RTE_SUCCESS on success and an error-code on failure.
Comment

10.1.15.5 RtosFileSetEndOfFile
This function set the current file pointer to the end of file.

UINT32 RtosFileEof (

RTOSLIB_HANDLE hFileCreateEx)
Parameter
hFileCreateEx
[in] Object handle returned from RtosFileCreateEx()
Return

RTE_SUCCESS on success and an error-code on failure.
Comment

10.10.2024 Page 117/205

10.1.15.6 RtosFileSetFilePointer
This function sets the file pointer on the desired location.

UINT32 RtosFileSetFilePointer (

RTOSLIB_HANDLE hFileCreateEx,
INT64* pgnDistanceToMove,
UINT32 dwMoveMethod)
Parameter
hFileCreateEx
[in] Object handle returned from RtosFileCreateEx()

pgnDistanceToMove

[infout] Value that specifies the number of bytes to move the file pointer.
dwMoveMethod

[in] The starting point for the file pointer move. See comment.

Return
RTE_SUCCESS on success and an error-code on failure.

Comment
The following starting points are defined:

Value Meaning
RTOSFILE BEGIN (0)]:Ii'lr;e starting point is zero or the beginning of the
RTOSFILE CURRENT (1) Th_e starting point is the current value of the file
- pointer.
RTOSFILE END (2) The' ;tartmg point is the current end-of-file
- position.

10.1.15.7 RtosFileGetInformationByHandle
This function gets information about the file described by its handle.

UINT32 RtosFileGetinformationByHandle (

RTOSLIB_HANDLE hFileCreateEx,
PRTOSFILE_BY_HANDLE_INFORMATION pFilelnfo)
Parameter
hFileCreateEx
[in] Object handle returned from RtosFileCreateEx()
pFilelnfo

[out] Collected file information. See comment.

Return
RTE_SUCCESS on success and an error-code on failure.

Comment
The following informations will be collected:

typedef struct RTOSFILE BY HANDLE INFORMATION {

UINT64 gwCreationTime; Value that specifies when a file or
directory was created.
UINT64 gwLastAccessTime; For a file, the value specifies when the

file was last read from, written to, or
for executable files, run.

For a directory, the structure specifies
when the directory is created.

10.10.2024 Page 118/205

UINT64 gwLastWriteTime; For a file, the value specifies when the
file was last written to, truncated, or
overwritten.

For a directory, the value specifies
when the directory is created.

UINT64 gwFileSize; File size in bytes.

UINT64 gwFilelIndex; A unique identifier that is associated
with a file.

UINT32 dwFileAttributes; The file attributes of a file.

- see RtosFileCreateEx () comment.
UINT32 dwVolumeSerialNumber; The serial number of the volume that
contains a file.
UINT32 dwNumberOfLinks; The number of links to this file.
UINT32 dwReservedFor64BitAlignment;
} RTOSLIB_PACKED(S) RTOSFILE BY HANDLE INFORMATION,
*PRTOSFILE_BY_HANDLE_INFORMATION;

10.1.15.8 RtosFileGetTime
This function gets the file time.

UINT32 RtosFileGetTime (

RTOSLIB_HANDLE hFileCreateEx,
UINT64* pgwCreationTime,
UINT64* pgwlLastAccessTime,
UINT64* pgwLastWriteTime)
Parameter
hFileCreateEx
[in] Object handle returned from RtosFileCreateEx()

pgwCreationTime

[out] Get the file creation time.
pgwLastAccessTime

[out] Get the file last access time.
pgwLastWriteTime

[out] Get the file last write time.

Return
RTE_SUCCESS on success and an error-code on failure.

Comment
If a value is not desired, a NULL could be supplied.

10.1.15.9 RtosFileSetTime
This function sets the file time.

UINT32 RtosFileSetTime (

RTOSLIB_HANDLE hFileCreateEx,
UINT64* pgwCreationTime,
UINT64* pgwLastAccessTime,
UINT64* pgwLastWriteTime)
Parameter
hFileCreateEx
[in] Object handle returned from RtosFileCreateEx()

pgwCreationTime
10.10.2024 Page 119/205

[in] Set the file creation time, if not NULL.
pgwLastAccessTime

[in] Set the file last access time, if not NULL.
pgwLastWriteTime

[in] Set the file last write time, if not NULL.

Return
RTE_SUCCESS on success and an error-code on failure.

Comment

10.1.15.10 RtosFileGetTempNameA
Get temp file name based on the values of the parameter.

UINT32 RtosFileGetTempNameA (

const CHAR* szPathName,
const CHAR* szPrefixString,
UINT32* pdwUnique,
CHAR* szTempFileName)
Parameter
szPathName

[in] The directory path for the file name. Applications typically specify a period (.) for the
current directory. The string cannot be longer than RTOSFILE_ MAX_PATH-14
characters and not NULL.

szPrefixString

[in] The function uses up to the first three characters of this string as the prefix of the file
name.

pdwUnique

[infout] An unsigned integer to be used in creating the temporary file name.

szTempFileName

[out] Generated temporary file name.

Return
RTE_SUCCESS on success and an error-code on failure.

Comment
The macro RtosFileGetTempName can be used to call RtosFileGetTempNameW if UNICODE is
defined and RtosFileGetTempNameA if not.

If *pdwUnique is zero, the function attempts to form a unique file name using the current system time.
If the function succeeds, the returned value in *pdwUnique specifies the unique numeric value used in
the temporary file name. If the *pdwUnique parameter is nonzero, the return value specifies that same

number.
If the function fails, the returned value in *pdwUnique is zero.

10.1.15.11 RtosFileGetTempNameW
See RtosFileGetTempNameA.

UINT32 RtosFileGetTempNameW (

const WCHAR* wszPathName,
const WCHAR* wszPrefixString,
UINT32* pdwUnique,
WCHAR* wszTempFileName)

10.10.2024 Page 120/205

10.1.15.12 RtosFileMoveA
Move a file with the specified name (across directories).

UINT32 RtosFileMoveA (

const CHAR* szExistingFilename,
const CHAR* szNewFilename)
Parameter
szExistingFilename
[in] Name of the file to be moved
szNewFilename
[in] New name and/or location of the file
Return

RTE_SUCCESS on success and an error-code on failure.
Comment
The macro RtosFileMove can be used to call RtosFileMoveW if UNICODE is defined and

RtosFileMoveA if not.
This function is not supported on SHM file mode!

10.1.15.13 RtosFileMoveW
See RtosFileMoveA

UINT32 RtosFileMoveW (

const WCHAR* wszExistingFilename,
const WCHAR* wszNewFilename)

10.1.15.14 RtosFileGetAttributesA
Get the file attributes.

UINT32 RtosFileGetAttributesA (

const CHAR* szFileName,
UINT32* pdwFileAttributes)
Parameter
szFileName
[in] Name of the file which attributes are desired

pdwFileAttributes
[out] File attributes. See RtosFileCreateEx() comment.

Return
RTE_SUCCESS on success and an error-code on failure.

Comment
The macro RtosFileGetAttributes can be used to call RtosFileGetAttributesW if UNICODE is defined

and RtosFileGetAttributesA if not.
This function is not supported on SHM file mode!

10.1.15.15 RtosFileGetAttributesW
See RtosFileGetAttributesA

10.10.2024 Page 121/205

UINT32 RtosFileGetAttributesW (
const WCHAR* wszFileName,
UINT32* pdwFileAttributes)

10.1.15.16 RtosFileSetAttributesA
Set the file attributes.

UINT32 RtosFileSetAttributesA (

const CHAR* szFileName,
UINT32 dwFileAttributes)
Parameter
szFileName
[in] Name of the file which attributes should be set.
dwFileAttributes
[in] New file attributes. See RtosFileCreateEx() comment.
Return

RTE_SUCCESS on success and an error-code on failure.

Comment

The macro RtosFileSetAttributes can be used to call RtosFileSetAttributesW if UNICODE is defined
and RtosFileSetAttributesA if not.

This function is not supported on SHM file mode!

10.1.15.17 RtosFileSetAttributesW
See RtosFileSetAttributesA

UINT32 RtosFileSetAttributesW (

const WCHAR* wszFileName,
UINT32 dwFileAttributes)

10.1.15.18 RtosFileGetDiskFreeSpaceA
Get the available free disk space.

UINT32 RtosFileGetDiskFreeSpaceA (

const CHAR* szRootPathName,
UINT32* pdwSectorsPerCluster,
UINT32* pdwBytesPerSector,
UINT32* pdwNumberOfFreeClusters,
UINT32* pdwTotalNumberOfClusters)
Parameter
szFileName
[in] The root directory of the disk for which information is to be returned.

pdwSectorsPerCluster

[out] A pointer to a variable that receives the number of sectors per cluster.
pdwBytesPerSector

[out] A pointer to a variable that receives the number of bytes per sector.
pdwNumberOfFreeClusters

[out] A pointer to a variable that receives the total number of free clusters on the disk.
pdwTotalNumberOfClusters

[out] A pointer to a variable that receives the total number of clusters on the disk.

Return
10.10.2024 Page 122/205

RTE_SUCCESS on success and an error-code on failure.

Comment

The macro RtosFileGetDiskFreeSpace can be used to call RtosFileGetDiskFreeSpaceW if UNICODE
is defined and RtosFileGetDiskFreeSpaceA if not.

This function is not supported on SHM file mode!

10.1.15.19 RtosFileGetDiskFreeSpaceW
See RtosFileGetDiskFreeSpaceA

UINT32 RtosFileGetDiskFreeSpaceW (

const WCHAR* wszRootPathName,

UINT32* pdwSectorsPerCluster,
UINT32* pdwBytesPerSector,

UINT32* pdwNumberOfFreeClusters,
UINT32* pdwTotalNumberOfClusters)

10.1.15.20 RtosFileFindFirstA
Find first file and get find file handle for subsequent find next calls.

UINT32 RtosFileFindFirstA (

const CHAR* szName,
PRTOSFILEFIND_DATA_A pFindData,
RTOSLIB_HANDLE* phFind)
Parameter
szName
[in] The directory or path, and the file name, which can include wildcard characters, for

example, an asterisk (*) or a question mark (?).

This parameter should not be NULL, an invalid string (for example, an empty string or
a string that is missing the terminating null character), or end in a trailing backslash (V).
pFindData
[out] A pointer to the RTOSFILEFIND_DATA structure that receives information about a
found file or directory. See comment.
phFind
[out] Handle for subsequent calls of RtosFileFindNext(). See comment.

Return
RTE_SUCCESS on success and an error-code on failure.

If the function fails because no matching files can be found, the function returns
RTE_ERROR_FILE_NOT_FOUND.

Comment

The macro RtosFileFindFirst can be used to call RtosFileFindFirstW if UNICODE is defined and
RtosFileFindFirstA if not.

This function is not supported on SHM file mode!

typedef struct RTOSFILEFIND DATA A
{

UINT64 gwCreationTime; Value that specifies when a file or
directory was created.
UINT64 gwlLastAccessTime; For a file, the value specifies when the

file was last read from, written to, or
for executable files, run.

For a directory, the structure specifies
when the directory is created.

10.10.2024 Page 123/205

UINT64 gwLastWriteTime; For a file, the value specifies when the
file was last written to, truncated, or
overwritten.

For a directory, the value specifies
when the directory is created.

UINT64 gwFileSize; File size in bytes.

UINT32 dwReservedO;

UINT32 dwReservedl;

UINT32 dwFileAttributes; The file attributes of a file.

- see RtosFileCreateEx () comment.

CHAR tszFileName [RTOSFILE MAX PATH];

CHAR tszAlternateFileName [RTOSFILE FIND FILENAME ALT LENGTH];

UINT16 wReservedFor64BitAlignment;

} RTOSLIB PACKED (8) RTOSFILEFIND DATA A, *PRTOSFILEFIND DATA A;

tszFileName contains the name of the file.
tszAlternateFileName contains an alternative name for the file.
This name is in the classic 8.3 file name format.

10.1.15.21 RtosFileFindFirstwW
See RtosFileFindFirstA

UINT32 RtosFileFindFirstW (

const WCHAR* wszName,
PRTOSFILEFIND_DATA_W pFindData,
RTOSLIB_HANDLE* phFind)

10.1.15.22 RtosFileFindNextA
Subsequent calls to get all files in specified directory.

UINT32 RtosFileFindNextA (

RTOSLIB_HANDLE hFind,
PRTOSFILEFIND_DATA_A pFindData)
Parameter
hFind
[in] Handle (returned by a previous RtosFileFindFirst call) for subsequent calls of

RtosFileFindNext(). See comment.
pFindData
[out] A pointer to the RTOSFILEFIND_DATA structure that receives information about a
found file or directory. See comment.

Return
RTE_SUCCESS on success and an error-code on failure.

If the function fails because no more matching files can be found, the function returns
RTE_ERROR_FILE_NO_MORE_FILES.

Comment

The macro RtosFileFindNext can be used to call RtosFileFindNextW if UNICODE is defined and
RtosFileFindNextA if not.

This function is not supported on SHM file mode!

10.1.15.23 RtosFileFindNextW

See RtosFileFindNextA
10.10.2024 Page 124/205

UINT32 RtosFileFindNextW (
RTOSLIB_HANDLE hFind,
PRTOSFILEFIND_DATA_W pFindData)

10.1.15.24 RtosFileSetCurrentDirectoryA
Set the current directory.

UINT32 RtosFileSetCurrentDirectoryA (

const CHAR* szPathName)
Parameter
szPathName
[in] The path to the new current directory. This parameter may specify a relative path or a

full path. In either case, the full path of the specified directory is calculated and stored
as the current directory. See comment

Return
RTE_SUCCESS on success and an error-code on failure.

Comment

The string must not exceed RTOSFILE_MAX_PATH characters, including the terminating null
character. The final character before the null character must be a backslash ('\'). If you do not specify
the backslash, it will be added for you; therefore, specify RTOSFILE_MAX_PATH-2 characters for the
path unless you include the trailing backslash, in which case, specify RTOSFILE_MAX_PATH-1
characters for the path.

The macro RtosFileSetCurrentDirectory can be used to call RtosFileSetCurrentDirectoryW if
UNICODE is defined and RtosFileSetCurrentDirectoryA if not.
This function is not supported on SHM file mode!

10.1.15.25 RtosFileSetCurrentDirectoryW
See RtosFileSetCurrentDirectoryA

UINT32 RtosFileSetCurrentDirectoryW (
const WCHAR* wszPathName)

10.1.15.26 RtosFileGetCurrentDirectoryA
Get the current directory.

UINT32 RtosFileGetCurrentDirectoryA (

UINT32* pdwBufferLength,
const CHAR* szPathName)
Parameter
pdwBufferLength

[in/out] Size of supplied buffer. The buffer length must include room for a terminating null
character.
szPathName

[out] A pointer to the string buffer that receives the current directory string. See comment

Return
RTE_SUCCESS on success and an error-code on failure.

Comment
10.10.2024 Page 125/205

Setting parameter szPathName to NULL and supply *pdwBufferLength = 0, than the needed buffer
size will be determined and returned by pdwBufferLength, in characters, including the null-terminating
character.

The macro RtosFileGetCurrentDirectory can be used to call RtosFileGetCurrentDirectoryW if
UNICODE is defined and RtosFileGetCurrentDirectoryA if not.
This function is not supported on SHM file mode!

10.1.15.27 RtosFileGetCurrentDirectoryW
See RtosFileGetCurrentDirectoryA

UINT32 RtosFileGetCurrentDirectoryW (
UINT32* pdwBufferLength,
const WCHAR* wszPathName)

10.1.15.28 RtosFileCreateDirectoryA
Create a new directory.

UINT32 RtosFileCreateDirectoryA (
const CHAR* szPathName,
const PRTOS_SECURITY_ATTRIBUTES pSecurityAttributes)

Parameter
szPathName
[in] The path of the directory to be created.

There is a default string size limit for paths of 248 characters.

pSecurityAttributes
[in] Currently only NULL is supported.

Return
RTE_SUCCESS on success and an error-code on failure.

Comment

The macro RtosFileCreateDirectory can be used to call RtosFileCreateDirectoryW if UNICODE is
defined and RtosFileCreateDirectoryA if not.

This function is not supported on SHM file mode!

10.1.15.29 RtosFileCreateDirectoryW
See RtosFileCreateDirectoryA

UINT32 RtosFileCreateDirectoryW (
const WCHAR* wszPathName,
const PRTOS_SECURITY_ATTRIBUTES pSecurityAttributes)

10.1.15.30 RtosFileRemoveDirectoryA
Remove the specified directory.

UINT32 RtosFileRemoveDirectoryA (
10.10.2024 Page 126/205

const CHAR* szPathName)

Parameter
szPathName
[in] The path of the directory to be removed. This path must specify an empty directory.

Return
RTE_SUCCESS on success and an error-code on failure.

Comment
The macro RtosFileRemoveDirectory can be used to call RtosFileRemoveDirectoryW if UNICODE is

defined and RtosFileRemoveDirectoryA if not.
This function is not supported on SHM file mode!

10.1.15.31 RtosFileRemoveDirectoryW
See RtosFileRemoveDirectoryA

UINT32 RtosFileRemoveDirectoryW (
const WCHAR* wszPathName)

10.10.2024 Page 127/205

10.1.16 RTOS Library — generic object functions
RtosLib provides generic functions for handling different object types like events, files, sockets, etc.

10.1.16.1 RtosObjectRead
This is the generic function to read data into a buffer.

UINT32 RtosObjectRead(

RTOSLIB_HANDLE hObject,
UINT8 *pBuffer,
UINT32 dwBufferSize,
UINT32 *ndwBytesRead,
UINT32 dwTimeoutMs)
Parameter
hObject
[in] Object handle returned from

RtosMsgQueueCreate(), RtosPipeCreate(), RtosSocketCreate(), RtosFileCreate()

pBuffer

[out] Buffer to receive the data read
dwBufferSize

[in] Length of string buffer in bytes
pdwBytesRead

[out] Number of bytes read into the buffer
dwTimeoutMs

[in] Timeout in milliseconds

Return
RTE_SUCCESS on success and an error-code on failure.

Comment

If there is no data to be read the function will return after timeout elapsed.

If data was read the function will return as soon as the read buffer is full or there is no more data to be
read.

10.10.2024 Page 128/205

10.1.16.1 RtosObjectWrite
This is the generic function to write data from a buffer.

UINT32 RtosObjectWrite(

RTOSLIB_HANDLE hObject,
const UINTS8 *pBuffer,
UINT32 dwBufferSize,
UINT32 *ndwBytesWritten,
UINT32 dwTimeoutMs)
Parameter
hObject
[in] Object handle returned from
RtosMsgQueueCreate(), RtosPipeCreate(), RtosSocketCreate(), RtosFileCreate()
pBuffer
[out] Buffer to receive the data read
dwBufferSize
[in] Length of string buffer in bytes
pdwBytesWritten

[out] Number of bytes written
dwTimeoutMs
[in] Timeout in milliseconds

Return
RTE_SUCCESS on success and an error-code on failure.

Comment
The function will return after all data was written or the timeout elapsed.
If the timeout elapsed the number of bytes written will be returned in pdwBytesWritten.

10.1.16.2 RtosObjectWait

This is the generic function to wait for an event. The event is object specific. For details check the
comment.

UINT32 RtosObjectWait (

RTOSLIB_HANDLE hObject,
UINT32 dwTimeoutMs)
Parameter
hObject
[in] Object handle returned from

RtosCreateEvent(), RtosNotificationExCreate(), RtosMsgQueueCreate(),
RtosPipeCreate(),RtosSocketCreate(),RtosFileCreate()
dwTimeoutMs
[in] Timeout in milliseconds

Return
RTE_SUCCESS on success and an error-code on failure.

Comment
The function will return when the object was signalled or after timeout elapsed.
The signal is object specific:

- Event : The event was set

- NotificationEx : A notification occurred - use RtosNotificationWait instead for details.
- MsgQueue : Reader: Read data available / Writer: Data can be send

- Pipe : Read data available

- Socket : Read data available

10.10.2024 Page 129/205

10.1.16.3 RtosObjectBreakWait
This is the generic function to break a waiting function.

UINT32 RtosObjectBreakWait (

RTOSLIB_HANDLE hObject)
Parameter
hObject
[in] Object handle returned from

RtosCreateEvent(), RtosNotificationExCreate(), RtosMsgQueueCreate(),
RtosPipeCreate(),RtosSocketCreate(),RtosFileCreate()

Return
RTE_SUCCESS on success and an error-code on failure.

Comment
A thread could be waiting infinite for an event. If this thread should be shut down the

RtosObjectBreakWait function can be used to break the wait. In this case the wait function will return
the error RTE_ERROR_BREAK_WAIT.

10.1.16.4 RtosObjectClose
This is the generic function to close any RTOSLIB_HANDLE object.

UINT32 RtosObjectClose (

RTOSLIB_HANDLE hObject)
Parameter
hObject
[in] Object handle returned from

RtosCreateEvent(), RtosNotificationExCreate(), RtosMsgQueueCreate(),
RtosPipeCreate(),RtosSocketCreate(),RtosFileCreate()

Return
RTE_SUCCESS on success and an error-code on failure.

Comment

The handle becomes invalid and can’t be used any more — regardless of an returned error code like
timout.

10.10.2024 Page 130/205

10.1.16.1 RtosObjectOptionSet

This is the generic function to configure a handle option. The option is object specific. For details
check the comment.

UINT32 RtosObjectOptionSet (

RTOSLIB_HANDLE hObject,
UINT32 dwOptionld,
const UINTS8 *pBuffer,
UINT32 dwBufferSize)
Parameter
hObject
[in] Object handle returned from
RtosSocketCreate(), RtosFileCreate()
dwOptionld
[in] Object specific ID
pBuffer
[in] Buffer containing the data to be set

dwBufferSize
[in] Length of buffer in bytes

Return
RTE_SUCCESS on success and an error-code on failure.

Comment
Possible options are object specific:

Object | Option ID Type Description

Socket RTOSSOCKET OPTION RCVTIMEO UINT32 Default Rx timeout in milliseconds

Socket RTOSSOCKET OPTION SNDTIMEO UINT32 Default Tx timeout in milliseconds

File RTOSFILE_ OPTION ACKTIMEOUT UINT32 Default acknowledge timeout in milliseconds

10.1.16.1 RtosObjectOptionGet

This is the generic function to query a handle option. The option is object specific. See
“RtosObjectOptionSet” for details.

UINT32 RtosObjectOptionGet (

RTOSLIB_HANDLE hObject,
UINT32 dwOptionld,
const UINTS8 *pBuffer,
UINT32 dwBufferSize)
Parameter
hObject
[in] Object handle returned from
RtosSocketCreate(), RtosFileCreate()
dwOptionld
[in] Object specific ID
pBuffer
[out] Buffer for receiving the option data
dwBufferSize

[in] Length of buffer in bytes

Return
RTE_SUCCESS on success and an error-code on failure.

Comment
See “RtosObjectOptionSet” for details.

10.10.2024 Page 131/205

10.1.17 RTOS Library — message queue functions
RtosLib contains message queue functionality based on shared memory communicaiton.

10.1.17.1 RtosMsgQueueCreateA
This function creates a message queue

UINT32 RtosMsgQueueCreateA (

const CHAR* szName,
PRTOSMSGQUEUE_OPTIONS pOptions,
RTOSLIB_HANDLE* phObject)
Parameter
szName
[in] Name of the message queue
pOptions
[in] Message queue options. See comment.
phObject

[out] Pointer to receive a RTOSLIB_HANDLE object (message queue).

Return
RTE_SUCCESS on success and an error-code on failure.

Comment

typedef struct _ RTOSMSGQUEUE_OPTIONS
{

UINT32 dwSize; must be initialized with sizeof(RTOSMSGQUEUE_OPTIONS)

UINT32 dwFlags; can be
- RTOSMSGQUEUE_OPTIONS_FLAG_ALLOWBROKEN
to allow reading and writing the queue without counterpart
being connected
- RTOSMSGQUEUE_OPTIONS_FLAG_FORCE_CREATE
to ensure the message queue didn’t exist before
- RTOSMSGQUEUE_OPTIONS_FLAG_FORCE_OPEN
to ensure the message queue existed before

RTOSMSGQUEUE_OPTIONS_FLAG_FORCE_EXCLUSIVE
to ensure being the first reader or writer (depending on
bReadAccess)

UINT32 dwNumMessages; number of messages the queue should contain.
0 uses the maximum available.

UINT32 dwMsgDataSizelnBytes; number of data bytes usable in each message

BOOL bReadAccess; determines if the creator will be reader or writer to this queue.

} RTOSMSGQUEUE_OPTIONS, *PRTOSMSGQUEUE_OPTIONS;

The message queue shared memory (named “RtosLibMsgQueue”) will be divided into n equal sized
parts. The shared memory size per queue can be configured via config file:

[MessageQueue\\RtosLibMsgQueue]
“MaxShmUsagePerQueue”=dword:100000

Note that not the entire data can be used by user data since there is also queue administrative data.

The macro RtosMsgQueueCreate can be used to call RtosMsgQueueCreateW if UNICODE is defined
and RtosMsgQueueCreateA if not.

Hint:

Because the queue has a fixed maximum size the dwNumMessages member could be set to 0 to gain
the maximum number of packets.

10.10.2024 Page 132/205

10.1.17.2 RtosMsgQueueCreateW
See RtosMsgQueueCreateA

UINT32 RtosMsgQueueCreateW (

const WCHAR* wszName,
PRTOSMSGQUEUE_OPTIONS pOptions,
RTOSLIB_HANDLE* phObject)

10.1.17.1 RtosMsgQueuelnfoGet
This function queries information about message queue

UINT32 RtosMsgQueuelnfoGet (
RTOSLIB_HANDLE hObject
PRTOSMSGQUEUE_INFO pinfo)

Parameter
hObject
[in] Object handle returned from
RtosMsgQueueCreate()
pinfo
[in] Information structure. See comment.
Return

RTE_SUCCESS on success and an error-code on failure.
Comment

typedef struct RTOSMSGQUEUE_INFO

{
UINT32 dwSize; must be initialized with sizeof(RTOSMSGQUEUE_INFO)
UINT32 dwFlags; reserved — should be 0.
UINT32 dwNumMessages; number of message containers
UINT32 dwNumPending; number of currently pending messages
UINT32 dwNumPendingMax; maximum number of pending messages
UINT32 dwMsgDataSizelnBytes; maximum data size per message in bytes
UINT16 wNumReaders; number of readers attached to this queue
UINT16 wNumWriters; number of writers attached to this queue

} RTOSMSGQUEUE_INFO, *PRTOSMSGQUEUE_INFO;

10.1.17.1 RtosMsgQueueRead
This is a synonym for RtosObjectRead. See RtosObjectRead for details.

UINT32 RtosMsgQueueRead (

RTOSLIB_HANDLE hObject,

UINT8 *pBuffer,
UINT32 dwBufferSize,
UINT32 *ndwBytesRead,
UINT32 dwTimeoutMs)

10.10.2024 Page 133/205

10.1.17.1 RtosMsgQueueWrite
This is a synonym for RtosObjectWrite. See RtosObjectWrite for details.

UINT32 RtosMsgQueueWrite (

RTOSLIB_HANDLE hObject,

const UINTS8 *pBuffer,

UINT32 dwBufferSize,
UINT32 *ndwBytesWritten,
UINT32 dwTimeoutMs)

10.1.17.1 RtosMsgQueueWait
This is a synonym for RtosObjectWait. See RtosObjectWait for details.

UINT32 RtosMsgQueueWait (

RTOSLIB_HANDLE hObject,
UINT32 dwTimeoutMs)

10.1.17.1 RtosMsgQueueBreakWait
This is a synonym for RtosObjectBreakWait. See RtosObjectBreakWait for details.

UINT32 RtosMsgQueueBreakWait (
RTOSLIB_HANDLE hObject)

10.1.17.2 RtosMsgQueueClose
This is a synonym for RtosObjectClose. See RtosObjectClose for details.

UINT32 RtosMsgQueueClose (
RTOSLIB_HANDLE hObject)

10.10.2024 Page 134/205

10.1.18 RTOS Library — pipe functions
RtosLib contains pipe functionality based on shared memory communicaiton.

10.1.18.1 RtosPipeCreateA
This function creates a message queue

UINT32 RtosPipeCreateA (

const CHAR* szName,
PRTOSPIPE_OPTIONS pOptions,
RTOSLIB_HANDLE* phObject)
Parameter
szName
[in] Name of the pipe
pOptions
[in] Pipe options. See comment.
phObject

[out] Pointer to receive a RTOSLIB_HANDLE object (pipe).

Return
RTE_SUCCESS on success and an error-code on failure.

Comment

typedef struct _ RTOSPIPE_OPTIONS
{
UINT32 dwsSize; must be initialized with sizeof(RTOSPIPE_OPTIONS)
UINT32 dwFlags; can be
- RTOSPIPE_OPTIONS_FLAG_READ for read access
- RTOSPIPE_OPTIONS_FLAG_WRITE for write access
- RTOSPIPE_OPTIONS_FLAG_READWRITE for both
UINT32 dwAvgDataSize; Should be set to the average message data size in bytes.
0 = default = 1500 bytes
} RTOSPIPE_OPTIONS, *PRTOSPIPE_OPTIONS;

A pipe contains two queues — one for reading and one for writing.
Only the queue(s) requested (read / write / read+write) will be created.

To establish a communication using a pipe one side must call RtosPipeCreate while the other side has
to call RtosPipeOpen. This is required to open the correct message queues.

The first caller — regardless of using RtosPipeCreate or RtosPipeOpen — will initialize the pipe with its
average data size. The second caller’s average data size parameter will be ignored.

The macro RtosPipeCreate can be used to call RtosPipeCreateW if UNICODE is defined and
RtosPipeCreateA if not.

10.1.18.2 RtosPipeCreateW
See RtosPipeCreateA

UINT32 RtosPipeCreateW(

const WCHAR* wszName,
PRTOSPIPE_OPTIONS pOptions,
RTOSLIB_HANDLE* phObject)

10.10.2024 Page 135/205

10.1.18.1 RtosPipeOpenA

This function opens a message queue. The counterpart has to use RtosPipeCreate. See
RtosPipeCreateA for details.

UINT32 RtosPipeOpenA (

const CHAR* szName,
PRTOSPIPE_OPTIONS pOptions,
RTOSLIB_HANDLE* phObject)

10.1.18.1 RtosPipeOpenW

This function opens a message queue. The counterpart has to use RtosPipeCreate. See
RtosPipeCreateA for details.

UINT32 RtosPipeOpenW (

const WCHAR* wszName,
PRTOSPIPE_OPTIONS pOptions,
RTOSLIB_HANDLE* phObject)

10.1.18.2 RtosPipelnfoGet
This function queries information about a pipe

UINT32 RtosPipelnfoGet (

RTOSLIB_HANDLE hObject
PRTOSPIPE_INFO pinfo)
Parameter
hObject
[in] Object handle returned from
RtosPipeCreate()
pinfo
[in] Pointer to information structure. See comment.
Return

RTE_SUCCESS on success and an error-code on failure.
Comment

typedef struct _ RTOSPIPE_INFO

{
UINT32 dwsSize; must be initialized with sizeof(RTOSPIPE_INFO)
UINT32 dwFlags; see RTOSPIPE_OPTIONS_FLAG_...
UINT32 dwNumMessagesRXx; number of message containers for Rx queue
UINT32 dwNumMessagesTx; number of message containers for Tx queue
UINT32 dwNumPendingRx; number of currently pending Rx messages
UINT32 dwNumPendingTX; number of currently pending Tx messages
UINT32 dwNumPendingMaxRx; maximum number of pending Rx messages
UINT32 dwNumPendingMaxTXx; maximum number of pending Rx messages
UINT32 dwNumWriterRXx; number of writers attached to Rx
UINT32 dwNumReaderTx; number of reades attached to Tx

UINT32 dwMsgDataSizelnBytes; maximum data size per message in bytes.
Larger messages will be split into pakets.
} RTOSPIPE_INFO, *PRTOSPIPE_INFO;

10.10.2024 Page 136/205

10.1.18.3 RtosPipeRead
This is a synonym for RtosObjectRead. See RtosObjectRead for details.

UINT32 RtosPipeRead (

RTOSLIB_HANDLE hObject,

UINT8 *pBuffer,
UINT32 dwBufferSize,
UINT32 *ndwBytesRead,
UINT32 dwTimeoutMs)

10.1.18.4 RtosPipeWrite
This is a synonym for RtosObjectWrite. See RtosObjectWrite for details.

UINT32 RtosPipeWrite (

RTOSLIB_HANDLE hObject,

const UINTS8 *pBuffer,

UINT32 dwBufferSize,
UINT32 *ndwBytesWritten,
UINT32 dwTimeoutMs)

10.1.18.5 RtosPipeWait
This is a synonym for RtosObjectWait. See RtosObjectWait for details.

UINT32 RtosPipeWait (
RTOSLIB_HANDLE hObject,
UINT32 dwTimeoutMs)

10.1.18.6 RtosPipeBreakWait
This is a synonym for RtosObjectBreakWait. See RtosObjectBreakWait for details.

UINT32 RtosPipeBreakWait (
RTOSLIB_HANDLE hObject)

10.1.18.7 RtosPipeClose
This is a synonym for RtosObjectClose. See RtosObjectClose for details.

UINT32 RtosPipeClose (
RTOSLIB_HANDLE hObject)

10.10.2024 Page 137/205

10.1.19 RTOS Library — socket functions
RtosLib contains socket functionality based on shared memory communicaiton.

10.1.19.1 RtosSocketCreate
This function creates a socket

UINT32 RtosSocketCreate(

UINT32 dwFamily,

UINT32 dwType,

UINT32 dwProtocol,

RTOSLIB_HANDLE* phObject)
Parameter
dwFamily

[in] Socket family — must be RTOSSOCKET_FAMILY_RTE

dwType

[in] Socket type — currently only RTOSSOCKET_TYPE_STREAM is supported.
dwProtocol
[in] Protocol — can be RTOSSOCKET_PROTOCOL_TCP or
RTOSSOCKET_PROTOCOL_UDP
phObject
[out] Pointer to receive a RTOSLIB_HANDLE object (socket).

Return
RTE_SUCCESS on success and an error-code on failure.

Comment

10.1.19.1 RtosSocketBind
This function binds a socket

UINT32 RtosSocketBind(

RTOSLIB_HANDLE hObject,
UINT16 wPort)
Parameter
hObject
[in] Object handle returned from
RtosSocketCreate()
wPort
[in] Port number to bind the socket to.
Return

RTE_SUCCESS on success and an error-code on failure.

Comment

10.10.2024 Page 138/205

10.1.19.1 RtosSocketListen
This function configures a socket to listen

UINT32 RtosSocketListen(

RTOSLIB_HANDLE hObject)
Parameter
hObject
[in] Object handle returned from
RtosSocketCreate()
Return

RTE_SUCCESS on success and an error-code on failure.
Comment

10.1.19.1 RtosSocketAccept
This function (TCP) accepts a new connection

UINT32 RtosSocketAccept(

RTOSLIB_HANDLE hObject,
RTOSLIB_HANDLE* phObject,
PRTOSSOCKET_ADDR pAddrNew,
UINT32 dwTimeoutMs)
Parameter
hObject
[in] Object handle returned from
RtosSocketCreate()
phObject
[out] Pointer to receive a RTOSLIB_HANDLE object (socket).
pAddrNew

[out] Pointerto a RTOSSOCKET_ADDR structure containing the address of the new
socket. Its member ‘bySize’ must be initialized with sizeof(RTOSSOCKET_ADDR).
dwTimeoutMs
[in] Timeout in milliseconds

Return
RTE_SUCCESS on success and an error-code on failure.

Comment
Before calling RtosSocketAccept pAddrNew—->bySize must be initialized with
sizeof(RTOSSOCKET_ADDR).

typedef struct RTOSSOCKET_ADDR

{
UINT8 bySize; must be initialized with sizeof(RTOSSOCKET_ADDR)
UINT8 byFamily; see RTOSSOCKET_FAMILY_...
UINT16 wPort; port number

union RTOSSOCKET_ADDR_FAMILY
struct _RTOSSOCKET_ADDR_FAMILY_RAW
UINT8 abyData[12];
} Raw;
struct _RTOSSOCKET_ADDR_FAMILY_RTE

UINT32 dwOsld; osid
10.10.2024 Page 139/205

UINT32 adwReserved[2];
} Rte;

ju;
} RTOSSOCKET_ADDR, *PRTOSSOCKET_ADDR;

10.1.19.1 RtosSocketConnect
This function (TCP) connects to a server

UINT32 RtosSocketConnect (
RTOSLIB_HANDLE hObject,
const PRTOSSOCKET_ADDR pAddr)

Parameter
hObject
[in] Object handle returned from
RtosSocketCreate()
pAddr

[in] Pointer to a RTOSSOCKET_ADDR structure containing the address to connect to.
Its member ‘bySize’ must be initialized with sizeof(RTOSSOCKET_ADDR).

Return
RTE_SUCCESS on success and an error-code on failure.

Comment

Before calling RtosSocketConnect pAddr->bySize must be initialized with
sizeof(RTOSSOCKET_ADDR).

See RtosSocketAccept for details of RTOSSOCKET_ADDR.

10.1.19.1 RtosSocketShutdown
This function does shutdown a connection.

UINT32 RtosSocketShutdown (

RTOSLIB_HANDLE hObject)
Parameter
hObject
[in] Object handle returned from
RtosSocketCreate()
Return

RTE_SUCCESS on success and an error-code on failure.

Comment

10.10.2024 Page 140/205

10.1.19.1 RtosSocketRecv
This is the (TCP) function to receive data into a buffer.

UINT32 RtosSocketRecv (

RTOSLIB_HANDLE hObject,

UINT8 *pBuffer,

UINT32 dwBufferSize,

UINT32 *ndwBytesRead)
Parameter
hObject

[in] Object handle returned from
RtosSocketCreate()

pBuffer

[out] Buffer to receive the data read
dwBufferSize

[in] Length of string buffer in bytes
pdwBytesRead

[out] Number of bytes read into the buffer

Return
RTE_SUCCESS on success and an error-code on failure.

Comment

If there is no data to be read the function will return after timeout elapsed.

If data was read the function will return as soon as the read buffer is full or there is no more data to be
read.

The timeout can be configured - see RtosObjectOptionSet for detalils.

10.1.19.1 RtosSocketSend
This is the (TCP) function to send data from a buffer.

UINT32 RtosSocketSend (

RTOSLIB_HANDLE hObject,

const UINTS8 *pBuffer,

UINT32 dwBufferSize,

UINT32 *pdwBytesWritten)
Parameter
hObject

[in] Object handle returned from
RtosSocketCreate()

pBuffer

[out] Buffer to receive the data read
dwBufferSize

[in] Length of string buffer in bytes
pdwBytesWritten

[out] Number of bytes written

Return
RTE_SUCCESS on success and an error-code on failure.

Comment

The function will return after all data was written or the timeout elapsed.

If the timeout elapsed the number of bytes written will be returned in pdwBytesWritten.
The timeout can be configured - see RtosObjectOptionSet for details.

10.10.2024 Page 141/205

10.1.19.2 RtosSocketRecvFrom
This is the (UDP) function to receive data into a buffer and optionally get the source address.

UINT32 RtosSocketRecvFrom (

RTOSLIB_HANDLE hObject,
UINT8 *pBuffer,
UINT32 dwBufferSize,
UINT32 *ndwBytesRead,
PRTOSSOCKET_ADDR pAddr)
Parameter
hObject
[in] Object handle returned from
RtosSocketCreate()
pBuffer

[out] Buffer to receive the data read
dwBufferSize
[in] Length of string buffer in bytes
pdwBytesRead
[out] Number of bytes read into the buffer
pAddr
[out] Pointerto a RTOSSOCKET_ADDR structure to return the source address.
Its member ‘bySize’ must be initialized with sizeof RTOSSOCKET_ADDR).

Return
RTE_SUCCESS on success and an error-code on failure.

Comment

Before calling RtosSocketRecvFrom pAddr->bySize must be initialized with
sizeof(RTOSSOCKET_ADDR).

If there is no data to be read the function will return after timeout elapsed.

If data was read the function will return as soon as the read buffer is full or there is no more data to be
read.

The timeout can be configured - see RtosObjectOptionSet for details.

10.1.19.3 RtosSocketSendTo
This is the (UDP) function to send data from a buffer to a specific address.

UINT32 RtosSocketSendTo (

RTOSLIB_HANDLE hObject,
const UINTS8 *pBuffer,
UINT32 dwBufferSize,
UINT32 *ndwBytesWritten,
const PRTOSSOCKET_ADDR pAddr)
Parameter
hObject
[in] Object handle returned from
RtosSocketCreate()
pBuffer

[out] Buffer to receive the data read
dwBufferSize
[in] Length of string buffer in bytes
pdwBytesWritten
[out] Number of bytes written
pAddr
[in] Pointer to a RTOSSOCKET_ADDR structure containing the destination address.
Its member ‘bySize’ must be initialized with sizeof(RTOSSOCKET_ADDR).

10.10.2024 Page 142/205

Return
RTE_SUCCESS on success and an error-code on failure.

Comment
The function will return after all data was written or the timeout elapsed.

If the timeout elapsed the number of bytes written will be returned in pdwBytesWritten.
The timeout can be configured - see RtosObjectOptionSet for details.

10.1.19.4 RtosSocketReadFrom
This is the (UDP) function to receive data into a buffer and optionally get the source address.

UINT32 RtosSocketReadFrom (

RTOSLIB_HANDLE hObject,
UINT8 *pBuffer,
UINT32 dwBufferSize,
UINT32 *ndwBytesRead,
PRTOSSOCKET_ADDR pAddr,
UINT32 dwTimeoutMs)
Parameter
hObject
[in] Object handle returned from
RtosSocketCreate()
pBuffer

[out] Buffer to receive the data read
dwBufferSize
[in] Length of string buffer in bytes
pdwBytesRead
[out] Number of bytes read into the buffer
pAddr
[out] Pointerto a RTOSSOCKET_ADDR structure to return the source address.
Its member ‘bySize’ must be initialized with sizeof RTOSSOCKET_ADDR).
dwTimeoutMs
[in] Timeout in milliseconds

Return
RTE_SUCCESS on success and an error-code on failure.

Comment

Before calling RtosSocketReadFrom pAddr->bySize must be initialized with
sizeof(RTOSSOCKET_ADDR).

If there is no data to be read the function will return after timeout elapsed.

If data was read the function will return as soon as the read buffer is full or there is no more data to be
read.

10.10.2024 Page 143/205

10.1.19.5 RtosSocketWriteTo
This is the (UDP) function to send data from a buffer to a specific address.

UINT32 RtosSocketWriteTo (

RTOSLIB_HANDLE hObject,
const UINTS8 *pBuffer,
UINT32 dwBufferSize,
UINT32 *pdwBytesWritten,
const PRTOSSOCKET_ADDR pAddr,
UINT32 dwTimeoutMs)
Parameter
hObject
[in] Object handle returned from
RtosSocketCreate()
pBuffer

[out] Buffer to receive the data read
dwBufferSize
[in] Length of string buffer in bytes
pdwBytesWritten
[out] Number of bytes written
pAddr
[in] Pointer to a RTOSSOCKET_ADDR structure containing the destination address.
Its member ‘bySize’ must be initialized with sizeof RTOSSOCKET_ADDR).
dwTimeoutMs
[in] Timeout in milliseconds

Return
RTE_SUCCESS on success and an error-code on failure.

Comment

The function will return after all data was written or the timeout elapsed.
If the timeout elapsed the number of bytes written will be returned in pdwBytesWritten.

10.1.19.6 RtosSocketRead
(TCP) This is a synonym for RtosObjectRead. See RtosObjectRead for details.

UINT32 RtosSocketRead (

RTOSLIB_HANDLE hObject,

UINT8 *pBuffer,
UINT32 dwBufferSize,
UINT32 *ndwBytesRead,
UINT32 dwTimeoutMs)

10.1.19.7 RtosSocketWrite
(TCP) This is a synonym for RtosObjectWrite. See RtosObjectWrite for details.

UINT32 RtosSocketWrite (

RTOSLIB_HANDLE hObject,

const UINT8 *pBuffer,

UINT32 dwBufferSize,
UINT32 *ndwBytesWritten,
UINT32 dwTimeoutMs)

10.10.2024 Page 144/205

10.1.19.8 RtosSocketWait
This is a synonym for RtosObjectWait. See RtosObjectWait for details.

UINT32 RtosSocketWait (
RTOSLIB_HANDLE hObject,
UINT32 dwTimeoutMs)

10.1.19.9 RtosSocketBreakWait
This is a synonym for RtosObjectBreakWait. See RtosObjectBreakWait for details.

UINT32 RtosSocketBreakWait (
RTOSLIB_HANDLE hObject)

10.1.19.10 RtosSocketClose
This is a synonym for RtosObjectClose. See RtosObjectClose for details.

UINT32 RtosSocketClose (
RTOSLIB_HANDLE hObject)

10.1.19.11 RtosSocketOptionSet
This is a synonym for RtosObjectOptionSet. See RtosObjectOptionSet for details.

UINT32 RtosSocketOptionSet (

RTOSLIB_HANDLE hObject,
UINT32 dwOptionld,
const UINTS8 *pBuffer,
UINT32 dwBufferSize)

10.1.19.12 RtosSocketOptionGet
This is a synonym for RtosObjectOptionGet. See RtosObjectOptionGet for details.

UINT32 RtosSocketOptionGet (

RTOSLIB_HANDLE hObject,
UINT32 dwOptionld,
const UINTS8 *pBuffer,
UINT32 dwBufferSize)

10.10.2024 Page 145/205

10.1.20 RTOS Library — device functions

RtosLib contains device functionality for configuring host (Windows) devices.
This APl is only available on host-side.

10.1.20.1 RtosDeviceA
This function allows device configuration.

UINT32 RtosDeviceA (

const CHAR* szParams)
Parameter
szParams
[in] Configuration parameters — see Comment for details
Return

RTE_SUCCESS on success and an error-code on failure.

Comment

The function does not require RtosLiblnit to be called. In fact it must be called without RtosLiblInit when
installing RtosDrv.

Usage: RtosDevice(“[<opt>...] <command> [<arg>...]")

<opt>... Zero or more options (see list below)

<command> Specifies a command (see list below)

<arg>... Zero or more arguments that modify a command.

Options:

-force Force operation

-noui Do not display user interface

-all Also include non-present devices (default is only present devices)
Commands:

rte_install -inf:<inf>
Install RtE device support. This will update and register the Class(Co)lnstallers.
-inf.<inf> Can specify a single inf file or an directory containing inf files

rte_uninstall [-deldp]
Remove RtE device support including all assigned devices (present and non-present),
registry entries, services, inf's, class(co)installer, ...
-deldp Deletes installed driver packages for all RtE devices

rte_add [-slot] [-inf:<inf>] [<:n>] <id> [<id>...]
Add RtE device(s) assignment.
A registry entry will be written identifying this device as RtE device — and so only RtE
drivers will be accepted.
Be careful specifying ‘-noui’ because this might block an unsigned driver dialog and so
cause assignment to fail.

-slot On <pciid> the PCI slot will be assigned and not the device.
-inf:<inf> Can specify a single inf file or an directory containing inf files
<n> Specifies the n-th occurrence of a matching device

<id> Specifies the id of the devices.

10.10.2024 Page 146/205

rte_remove [-deldp] [-slot] [<:n>] <id> [<id>...]
rte_remove [-deldp] [-slot] [<:n>] =<class> [<id>...]
Remove RtE device(s) assignment.
The registry entry created by ‘rte_add’ will be removed.

-deldp Deletes installed driver packages for all RtE devices

-slot On <pciid> the PCI slot will be assigned and not the device.
<:n> Specifies the n-th occurrence of a matching device

<id> Specifies the id of the devices.

=<class> Specifies a device setup class.

rte_update -inf:<inf> <id> [<id>...]
Update existing drivers. This can be used to update an existing driver.
It is also possible to update a Windows device to become an RtE device.
It is not possible to update a RtE device assigned using “rte_add” to become a
Windows device again - this requires “rte_remove”.
-inf:<inf> Can specify a single inf file or an directory containing inf files
<id> Specifies the id of the devices.

rte_configure -<prop:val> [-<prop:val>...] [<:n>] <id> [<id>...]
rte_configure -<prop:val> [-<prop:val>...] [<:n>] =<class> [<id>...]
Configure RtE device(s) properties
<prop:val> Property and value to be set
-int_mode:0 Interrupt mode default (line interrupt)
-int_mode:1 Interrupt mode polling (requires specialized rt-driver)
-int_mode:2 Interrupt mode MSI (only available on PCle devices)

-osid:x Assign device to OS x (0=Rtos, 1=Rtosl, ..., OXFFFFFFFE=Auto)
-name:x Assign display name x to device. #2, #3, #4 will be appended case
multiple devices.
<n> Specifies the n-th occurrence of a matching device
<id> Specifies the id of the devices.
=<class> Specifies a device setup class.

root_addorupdate -inf:<inf> <hwid>
Updates a root enumerated driver or installs it when not found.
-inf:<inf> Specify a single inf file
<hwid> Specifies a hardware 1D for the device.

root_add <inf> <hwid>
Install root enumerated driver
-inf.<inf> Specifies an INF file with installation information for the device.
<hwid> Specifies a hardware ID for the device.

root_remove [-deldp] [<:n>] <id> [<id>...]
Remove root enumerated driver

-deldp Deletes installed driver packages for all RtE devices
<n> Specifies the n-th occurrence of a matching device
<id> Specifies the id of the devices.

find [<:n>] <id> [<id>...]
find [<:n>] =<class> [<id>...]
List found devices

<n> Specifies the n-th occurrence of a matching device
<id> Specifies the id of the devices.
=<class> Specifies a device setup class.

enable [<:n>] <id> [<id>...]
enable [<:n>] =<class> [<id>...]
Enable found devices

<n> Specifies the n-th occurrence of a matching device
<id> Specifies the id of the devices.
=<class> Specifies a device setup class.

10.10.2024 Page 147/205

disable [<:n>] <id> [<id>...]
disable [<:n>] =<class> [<id>...]
Disable found devices

<:n> Specifies the n-th occurrence of a matching device
<id> Specifies the id of the devices.
=<class> Specifies a device setup class.

dp_add <inf>
Install driver package
-inf:<inf> Specifies an INF file.

dp_delete <inf>
Remove driver package

-inf:<inf> Specifies an Oem*.inf file.
ID Examples:
<pciid> $5:2:0 PCI device with address bus 5 device 2 function 0
<hwid> ISAPNP\PNP0501 Hardware ID
*PNP0501 Hardware ID with apostrophe (' prefixes literal match -
matches exactly as typed, including the asterisk.)
<id> * All devices
ISAPNP\PNP0501 Hardware ID
PNP Hardware ID with wildcards (* matches anything)
@ISAPNP** Instance ID with wildcards (@ prefixes instance ID)
*PNP0501 Hardware ID with apostrophe (' prefixes literal match -
matches exactly as typed, including the asterisk.)
=SYSTEM All devices of class 'system’
$5:2:0 PCI device with address bus 5 device 2 function 0
<:n> <id> :2 *PNP0501 2nd occurrence of Hardware ID with apostrophe

Calling RtosDevice() function:

- RtosDevice is provided by RtosLib32.dll or RtosLib64.dll. Please pay attention that on a 64bit
system it is required to use RtosLib64.lib to succeed with device installation functions.

- Alternatively the Uploader (RtosUpload.exe) parameter ‘\device’ can be used to forward a
single string to RtosDevice(). To put multiple parameters into that string it has to be enclosed
by quotation marks.

This example will listing all COM devices:
>>C:\>RtosUpload.exe /nosleep /nowait /device “-all find *PNP050*"<<

RtE Setup:

- During installation Setup will call
>>RtosUpload.exe /nosleep /nowait /device "-noui rte_install -
inf\"$PATH_TO_RTE_RUNTIMES$\Drivers\RTOS_ Installer.inf\"'<<
to prepare for RtE device assignment.

- During uninstall Setup will call
>>RtosUpload.exe /nosleep /nowait /device “-noui rte_uninstall -deldp"<<
to assign all RtE devices back to Windows, Remove registrations and optionally delete all
installed RtE driver packages, if “-deldp” was specified.

Assigning a Pro1000 to RtE

- Assigning all found instances:
>>C:\>RtosUpload.exe /nosleep /nowait /device “rte_add -
inf\"$PATH_TO_RTE_RUNTIMES$\Drivers\" PC\VEN_8086&DEV_10A7"<<

- Assign first occurrence only :
>>C:\>RtosUpload.exe /nosleep /nowait /device “rte_add -
inf\"$PATH_TO_RTE_RUNTIMES$\Drivers\" :1 PCA\VEN_8086&DEV_10A7"<<

- Assing by PCI address (Bus 3 Device 2 Function 0)
>>C:\>RtosUpload.exe /nosleep /nowait /device “rte_add -
inf\"$PATH_TO_RTE_RUNTIMES$\Drivers\" $3:2:0"<<

- Remove by PCI address (Bus 3 Device 2 Function 0)
>>C:\>RtosUpload.exe /nosleep /nowait /device “-noui rte_remove -deldp $3:2:0"<<
This will also delete the driver package for this device.

10.10.2024 Page 148/205

Configuring a Pro1000

- Change interrupt to polling mode:
This requires a specialized driver supporting polling mode. EC-Master LinkLayer for example
are supporting this mode. Regular OS drivers will require an interrupt. If your driver requests
an interrupt but the device is configured for polling mode probably an “unexpected interrupt id”
message will appear when the driver starts.
>>C:\>RtosUpload.exe /nosleep /nowait /device "-noui rte_configure -int_mode:1 $3:2:0"<<

- Change interrupt to MSI mode:
MSI is supported by most PCle cards. Its useful to solve interrupt problems and can be
configured calling:
>>C:\>RtosUpload.exe /nosleep /nowait /device "-noui rte_configure -int_mode:2 $3:2:0"<<

- Assigning a device to another OS (Multi-RTOS):
>>C:\>RtosUpload.exe /nosleep /nowait /device "-noui rte_configure -osid:1 $3:2:0"<<

- Renaming a device:
>>C:\>RtosUpload.exe /nosleep /nowait /device "-noui rte_configure -name:\"My New Device
Name Pro1000\" $3:2:0"<<

Finding Pro1000
- Find all present Pro1000 on a system using Hardware ID:
>>C:\>RtosUpload.exe /nosleep /nowait /device "-all find PC\VEN_8086&DEV_10A7"<<
- Find all present Pro1000 on a system using Hardware ID and PCI addess B3-D0-FO:
>>C:\>RtosUpload.exe /nosleep /nowait /device "-all find $3:0:0"<<

Ensure a device is assigned to RTOS
- Ensure there are at least two Pro1000 assigned to RTOS:
>>C:\>RtosUpload.exe /nosleep /nowait /device "find :2 =RTOSDevices
PCI\VEN_8086&DEV_10A7"<<
- Ensure there are at least 4 (unspecified) devices assigned to RTOS:
>>C:\>RtosUpload.exe /nosleep /nowait /device "find :4 =RTOSDevices"<<

Assigning a PCI slot
This is usefull if you have a dedicated PCI slot being assigned to the RtE but different cards to be
plugged in. It might also help if you're using an OS imag on slightly different mainboards where device
instance might be different.
As consequence of assigning a slot the device can be exchanged but will still be assigned to RtE
automatically (in case the required drivers have been provided using for example ‘dp_add’ command).
- Assign PCI slot (Bus 3 Device 2 Function 0)
>>C:\>RtosUpload.exe /nosleep /nowait /device "rte_add -slot -inf:\"$PATH_TO_RTE_
RUNTIMES\Drivers\" $3:2:0"<<
- Remove PCI slot (Bus 3 Device 2 Function 0)
>>C:\>RtosUpload.exe /nosleep /nowait /device "rte_remove -noui -slot $3:2:0"<<

10.1.20.1 RtosDeviceW
This function allows device configuration. See RtosDeviceA for details.

UINT32 RtosDeviceW (
const WCHAR* wszParams)

10.10.2024 Page 149/205

10.1.21 RTOS Library — memory reservation functions

RtosLib contains memory reservation functionality for reserving memory without starting RTOS. A
setup can use this function to minimize the number of reboots required after installation to start a
RTOS.

10.1.21.1 RtosSetMemoryConfigurationA
This function does install or remove memory reservation.

UINT32 RtosSetMemoryConfigurationA (
const CHAR* szParams
const CHAR* szConfigFileName)

Parameter
szParams
[in] Configuration parameter:
“-a” for install or update reservations (requires config file)
“u” for uninstall reservations (will never ask for reboot)

“ur” for uninstall reservations (will ask for reboot when required)
‘- for validate reservations (requires config file)
szConfigFileName
[in] Config file — see comment for details

Return
RTE_SUCCESS on success and an error-code on failure.

Comment
The function does not require RtosLiblnit to be called.

10.1.21.2 RtosSetMemoryConfigurationW

This function does install or remove memory reservation. See RtosSetMemoryConfigurationA for
details.

UINT32 RtosSetMemoryConfigurationW (

const WCHAR* wszParams
const WCHAR* wszConfigFileName)

10.10.2024 Page 150/205

10.1.22 RTOS Library - virtual 1/0 (VIO) functions

RtosLib VIO functions allow reading and, if supported by the counterpart, writing to a virtual channel.
Such a virtual channel is used by each OS for message output and (if supported) command input.
The PUTTY based debug console is using this interface.

10.1.22.1 RtosVioCreate61
This function creates a handle to read or write to a VIO channel.

UINT32 RtosVioCreate61 (

UINT32 dwChannelindex

BOOL bIlsPrimary

RTOSLIB_HANDLE* phObject)
Parameter

dwChannellndex
[in] Channel index (0, 1, ...) — default OS channel equals the OS id.

bisPrimary
[in] Virtual I/O data are transferred between the primary OS, which usually is Windows,
and the secondary OS (SOS), which usually is the RTOS.
phObject

[in] Pointer to receive a RTOSLIB_HANDLE object (VIO).

Return
RTE_SUCCESS on success and an error-code on failure.

Comment
The function does not require RtosLiblnit to be called.

10.1.22.2 RtosVioClose
This is a synonym for RtosObjectClose. See RtosObjectClose for details.

UINT32 RtosVioClose (
RTOSLIB_HANDLE hObject)

10.1.22.3 RtosVioRead
This is a synonym for RtosObjectRead. See RtosObjectRead for details.

UINT32 RtosVioRead(

RTOSLIB_HANDLE hObject,

UINT8 *pBuffer,
UINT32 dwBufferSize,
UINT32 *ndwBytesRead,
UINT32 dwTimeoutMs)

10.1.22.4 RtosVioWrite
This is a synonym for RtosObjectWrite. See RtosObjectWrite for details.

UINT32 RtosVioWrite(

RTOSLIB_HANDLE hObject,

const UINT8 *pBuffer,

UINT32 dwBufferSize,
UINT32 *ndwBytesWritten,
UINT32 dwTimeoutMs)

10.10.2024 Page 151/205

10.2 RTOS Library example applications
Shipped with VmfWin are some example applications for VxWorks and Windows CE which show how
to use the RTOS library in a user application. The example applications may serve as a starting point.

The following examples are extracted from the ACONTIS CeWin product (Windows CE + Windows)
...\Examples\RtosLib\CeWin\WinCE

- Windows CE example applications
...\Examples\RtosLib\CeWin\Windows

- Windows example applications

The following examples are extracted from the ACONTIS VxWin product (VxWorks + Windows)
...\Examples\RtosLib\VxWin\VxWorks

- VxWorks example applications
...\Examples\RtosLib\VxWin\Windows

- Windows example applications

10.10.2024 Page 152/205

10.3 RTOS Library — compatibility issues for VxWin and CeWin 3.5
Most of the RTOS Library functions are compatible with VxWin 3.5 and CeWin 3.5.

10.3.1 Compatibility mode

To enable compatibility mode within existing applications some macros have to be defined prior to
including RtosLib.h:

a)

b)

c)

VxWin 3.5, CeWin 3.5 — Windows side of the application
#define RTOSLIB_API VERSION 35

#define RTOSLIB WIN

#include <RtosLib.h>

VxWin 3.5 — VxWorks side of the application
#define RTOSLIB API VERSION 35
#define RTOSLIB VXWORKS

#include <RtosLib.h>

VxWin 3.5 — Windows CE side of the application
#define RTOSLIB API VERSION 35
#define RTOSLIB WINCE

#include <RtosLib.h>

10.3.2 Initialization

Prior to using the RTOS Library it has to be initialized. See section 10.1.3 for more information.
Existing applications have to be adjusted appropriately.

10.3.3 Time/date and timezone synchronization

RtosSetClockMaster()

Dynamically setting the clock master (time and date) is deprecated. Setting a clock master for
an OS has to be done statically by configuration settings.

RtosStartTimeSync()

This function has been replaced by RtosTimeSyncStart().

The priority of the started task can be set using system functions. The default is lowest priority.
RtosStopTimeSync()

This function has been replaced by RtosTimeSyncStop ().

10.3.4 Function SetOutputStream

The function SetOutputStream does not exist in the new RTOS Library. Instead the new function
RtosSetOutputPrintf (see chapter 10.1.10.2) should be used.

10.10.2024 Page 153/205

11 Licensing

11.1 EC-Master (MAC-ID)

11.1.1 General

This product requires a valid license to be run. If your project also requires a MAC-ID licensed EC-
Master it's possible to use the MAC-ID based license of EC-Master to get this product licensed.
Finally one MAC-ID based licence is required to get both products (RTOS VM and EC-Master)
licensed.

11.1.2 Required steps
Add the following function call of the EC-Master library o your project and recompile it.
- ecatSetlicenseKey (" LICENSE KEY ");

No further actions are needed.
For additional information please check-out the specific EC-Master manual.

Hint: It's recommended that the call of ecatSetLicenseKey is done somewhere at start-up of the
application.

10.10.2024 Page 154/205

11.2 CodeMeter

11.2.1 USB or virtual Dongle

CodeMeter supports a hardware solution based on different types of USB dongles and a software
solution using a machine specific virtual dongle.
Aside from the first configuration is their handling equal.

CodeMeter requires the “CodeMeter Runtime-Kit” to recognize the licenses. This Kit will be
automatically installed by our product setup.
It can alternatively be downloaded from “http://wibu.com/download_user.php”.

11.2.2 USB dongle already containing a License

If you received an USB-Dongle including the license you can just plug the dongle into the PC and as
soon as it is recognized the ,CodeMeter Control Center” will change its icon from grey to green.

11.2.3 USB dongle not yet containing a License

In case you already own an USB-Dongle and want to add a license you need to create a license
request and send it to your support contact to receive a license update.

11.2.3.1 Generate license request
- Plug in your dongle
- Open ,CodeMeter Control Center* @ and select the dongle you want to receive a hew

license or a license update for.
- Select License Update”

& CodeMeter Control Center x|
File Process Wiew Help
License I Ewents | ﬁurrnwl
CrnStick, .
® ez Hame: _Iﬁ
Serial: 2-1561128 Ql
Version: CmStick 1.16 @l
Capacity: 93 % free (367144 Bytes)
Stakus: () Disabled
" &y Enabled until unplugged
& (S Enatled
LicanseUpdatel Eject | Change Password
CodeMeter is started. Webadrin |

- Press ,Next*
- Select ,Create license request” and press ,Next*

€ CmFAS Assistant d |

Please select the desired action

Choose this option if you want to create a license request file in order ko send it

Create license request
to the producer of the software,

Import license update

Choose this option, if you received a license update file from the software
producer and want to import: this File,

" Create receipt

Choose this option if ywou want to confirm the successful import of a license
update file for the software producer,

< Back. |I Texk = II Help

10.10.2024 Page 155/205

http://wibu.com/download_user.php

- Select ,Add license of a new producer” and press ,Next"

Please choose an option for the license request

" Extend existing license

Choose this option if you want to change an existing license or to add new
licenses to an existing license of the same producer.

¢+ Add license of a new producer

Choose this option if you want to add a new license and there are no licenses
from this producer in the selected license container.

< Back 'I Help |

- Enter ,101409" and press ,Next*

Please enter the FirmCode

| 101409|

Please enter the FirmCode which the producer told you.

<otk | wee> [wep |

- Select a path you want to save the request to and press ,,Commit*

€ CmFAS Assistant 21

Please select the file name

u Cr\MyLicenseRequest|2-1561 128 WibuCmR.aC] |

Select a file name for storing the license request File File, Then click on ‘commit’ to
create the file, ¥ou can then send this file ko the producer by email,

< Back Commit Help |

Please send the created file to your support contact requesting a new license.

11.2.3.2 Import anew license or a license update

If your support contact sent you a license update file (“YourFilename.WibuCmRaU”) you may install it
as described at “11.2.5.2

10.10.2024 Page 156/205

Import a license update”

10.10.2024 Page 157/205

11.2.4 Virtual Dongle

11.2.4.1 Virtual Machine (VM) usage

A Virtual Dongle license is bound to the hardware and a VM represents configurable, virtualized
hardware, so attention must be paid not to break the license.

We are using the recommended configuration for our CmActLicense: SmartBind with a tolerance value
Of (52”.

CodeMeter documentation says:

The behavior of CmActLicense with the binding scheme SmartBind for licenses in a VM is defined as

follows:

- Ifthe VM is copied. i.e. the "I copied it" option has been selected, the license becomes
invalid.

- Ifthe VM is moved, i.e. the "I moved it" option has been selected, then the license remains
intact in case of the same CPU types.
However, if the CPU types differs, the license also becomes invalid except the tolerance level
has been set to a value of "3" (loose).

- If a previously created snapshot of the VM is reverted, the license becomes invalid.

- Systern Manager V3.1 Build 0 (64-Bit Edition) - [C\Users\rte'AppDataiRoaming\acontis_technola.., — | X
File View LConfiguration Run Help
e 3
CL vy | = &) 7]
Fl -
& My Computer CPU Assignment
4 [0 Global Settings
: ssignmen ssign Operatin stems to the ‘s
CPUA it Assign Op g Sy he CPU
Realtime Optimizations
B9 Devices CPu# Windows 10 VxWorks 6.8
[Files B crun) 0
Memory Mapped Files — —
L v Mapp B cruz 7] (]
[Memory Areas — —
£ RTOS #1 (VaWorks 6.) o cpus o v
CPU assignment is valid
| Reset | |Recommended|
Show All Devices | @ RTOS Stopped | | Workspace Ch\Users\rte\AppData\Roaming\acentis technol

It is also required to configure the correct number of Windows CPUs before starting the following
license activation.

Please do not change any configuration between generating the license request and installing the
received license-update or the update might fail.

10.10.2024 Page 158/205

11.2.4.2 Import empty license container

For the software based solution you need a "*.WibuCmLIF" file which can typically be found in your
downloaded License Package .zip file. Please ask your sales contact to select the correct one.

- Open ,CodeMeter Control Center* @
- Drop the file "FileAsToldBySales.WibuCmLIF" from the File-Explorer into the “CodeMeter
Control Center”

& CodeMeter Control Center @

File Process View Help

Borrow |

License 1 Events

Name: Wirtual CmStick: REtE Runtime

Serial: 32767-1280498369

Version: CmActLicense 1.18

Status: (g Empty license container

Activate License| Remove License
CodeMeter is started. ‘WebAdmin

11.2.4.3 Activate License
- Open ,CodeMeter Control Center*” @

- Select the empty license container and press “Activate License”
& CodeMeter Control Center @

File Process View Help

License | Events Borrow |

:

@ Virtual CrStick: REE Runtime:

35767-1280493360 Name: Virtual CmStick: REE Runtime

Serial: 32767-1280498369

Version: CmActLicense 1.18

Status: (g Empty license container

‘Activate License I Remove License
CodeMeter is started. ‘WebAdmin

10.10.2024 Page 159/205

- press “Next”

Welcome to the CmFAS Assistant!

The CodeMeter Field Activation Service (CmFAS) assistant helps you adding,
changing and deleting licenses from the license management system CodeMeter.

With the CmFAS assistant you can create license request files, which you can send
to the producer of the software by email. You can also import the received license
update files with the CmFAS assistant into the license management and create a
receipt of the import for the producer.

7 —
< Back " Mext >]I[Help]
—

Select “Create license request” and press “Next” ‘
& CmFAS Assistant @

Please select the desired action

Choose this option if you want to create a license request file in order to send it

(® Create license request
to the producer of the software.

O Import license update

Choose this option, if you received a license update file from the software
producer and want to import this file.

O Create receipt

Choose this option if you want to confirm the successful import of a license
update file for the software producer.

Select a path you want to save the request to and press ,Commit*

Please select the file name

GC:1MyLicenseRequest132767-1280498369.WibquRaC] l@

Select a file name for storing the license request file file. Then click on ‘commit' to
create the file. You can then send this file to the producer by email.

Coee I cme P oo)

Please send the created file to your support contact requesting a new license.

11.2.4.4 Import a new license or a license update

If your support contact sent you a license update file (“YourFilename.WibuCmRaU”) you may install it
as described at “11.2.5.2 Import a license update”

10.10.2024 Page 160/205

11.2.5 Update a license

In this case you need to create a license request and send it to your support contact to receive a
license update.

11.2.5.1 Generate license request

- Open ,CodeMeter Control Center* @ and select the dongle you want to receive a license
update for.

- Select ,License Update”
x

File Process Wiew Help

License I Ewents | gurrnwl

Cmstick

2-1561128 Hame:

Serial: 2-1561128

le o |»

Wersion: CrStick 1.16

Capacity: 93 % free (367144 Bytes)

Status: (& Disabled
" oy Enabled until unplugged
& (S Enatled

License Update | Eject | Change Password

CodeMeter is started. Webadmin |

- Press ,Next*
- Select ,Create license request and press ,Next"

€ CmFAS Assistant I |

Please select the desired action

¥ Create license request

hoose this option if you want to create a license request file in order ta send it
to the producer of the software,

" Import license update

hoose this option, if you received a license update file from the software
producer and want to impart this File,

" Create receipt

“hoose this option if you want to confirm the successful import of a license
update file far the software producer,

< Back | Mext = Help

10.10.2024 Page 161/205

- Select ,Existing license® and press ,Next*

€% CmFAS Assistant i |

Please choose an option for the license request

¥ Extend existing license

hoose this option if you want to change an existing license or ko add new
licenses to an existing license of the same producer,

¢ add license of a new producer

“hoose this option if you want to add a new license and there are no licenses
Frann this producer in the selected license container.

_|< ack _HEID

- Select producter 101409 (,acontis technologies GmbH®) and press ,Next*

€% CmFAS Assistant i |

Please choose the producer

e 1
[Flacontis kechnologies GrbH (1014093 |
?

Select the software producer to which you want to send the license request file, The
producer will only see the data which vou select here. So vou can ensure that the
praducer doesn't see which other licenses From other suppliers wou have.

- Select a path you want to save the request to and press ,Commit*

€ CmFAS Assistant 21

Please select the file name

u Cr\MyLicenseRequest|2-1561 128 WibuCmRaC] |

Select a file name for storing the license request File File, Then click on ‘commit’ to
create the file, ¥ou can then send this file ko the producer by email,

< Back. Help |

Please send the created file to your support contact requesting a new license.

10.10.2024 Page 162/205

11.2.5.2 Import alicense update

If your support contact sent you a license update file (“YourFilename.WibuCmRaU”) you may install it
using the “CodeMeter Control Center”.

- Open ,CodeMeter Control Center* @
- Drop the file “YourFilename.WibuCmRaU” from the File-Explorer into the “CodeMeter Control
Center”
x|

File Process ‘Wiew Help

License I Events | ﬁurrnwl

CrnStickit .
& e Name: _If
Seridl: 1-1425683 Ql
Version: CmStickfM 1.15.808 @l
¥ CodeMeter x|

Information:
CodeMeter Remote Activation Update successfully finished, The CrStick.
"1-1425683" was updated,

T) Enatied antl anplagged
g @ Enabled

License Update | Eject | Change Password

CodeMeter is started. Webddrin |

10.10.2024 Page 163/205

11.2.6 Sharing a License

Depending on your license it is possible to share it over a network. This allows to plug the dongle into
a license server and use its license(s) from another PC over the network.

A license which can only be used locally:

CodeMeter WebAdmin
mmntent

CmContainer Licenses User Data Backup/Restore

‘Server Configuration Diagnosis Info

CmContainer: l 127-117986031 v

5010 | acontis technologies GmbH

Proguct Code Narme Unit Counter Expiration Time Activation Time License Quantity
4294901760 RtE Runtime n/a n/a n/a ' local I

Licenses which can be used over the network:

CodeMeter WebAdmin ;|

Content Server Configuration Diagnosis Info
CmContainer Licenses User Data Backup/Restore

1

CmcContainer: 1 2-1561128 |
101409 | acontis technologies GmbH
Product Code Name CoLLJ::z{er Expiration Time Achzbn éf::ﬁ;
16975104 D::;"I"D";ri;t n/a n/a n/a 1
17039616 D:::}’oir;m‘}étt n/a n/a n/a 1

11.2.6.1 Single PC

The “CodeMeter Runtime-Kit” was installed by the product setup. You can just plug the dongle into the
PC and as soon as it is recognized the ,CodeMeter Control Center” will change its icon from grey to
green.

11.2.6.2 Two PCs with dongle on target

If you have a PC with the runtime environment (target) where you want to plug the dongle in and a
development PC (host) you need the “CodeMeter Runtime-Kit” being installed on the target PC.

This should already be done by the product setup. You can just plug the dongle into the target PC and
as soon as it is recognized the ,CodeMeter Control Center” will change its icon from grey to green.

11.2.6.3 Two PCs with dongle on host

If you have a PC with the runtime environment (target) and a development PC (host) where you want
to plug the dongle in you need the “CodeMeter Runtime-Kit” being installed on both PC. This should
already be done by the product setup if you used it to install runtime components on the target and

10.10.2024 Page 164/205

development components on the host.
Alternatively the “CodeMeter Runtime-Kit” can be downloaded from
“http://wibu.com/download_user.php” and installed manually.

CodeMeter WebAdmin C\d

Home Content Server Diaghosis Info Help
Proxy Access Control Certified Time Webadmin Backup Borrowing

Network

Bind address *: IAH (Default) j
Metwork Part *: 22380

UDP Waiting Time *: |1000 ms
Fun Metwork Server:

Server Search List:

(*y Changes anly take effect after restarting CodeMeter

On your host PC you must configure the “CodeMeter Control Center” to act as license server:
- Open “CodeMeter Control Center”
- Click “WebAdmin”
- Select “Configuration” — “Network”
- Enable “Run Network Server”
- Press “Apply”

11.2.7 Troubleshooting

If a license error occurs in spite of a valid license possibly the Dongle has an incorrect time.
In this case the time has to be updated:

- Open ,CodeMeter Control Center*” @
- Select ,WebAdmin*“
- Select ,Content” and ,CmStick*

Content Server Configuration Diagnosis Info Help
CmStick Licenses User Data Backup/Restore
cmstick: |2-1561128 =l
Name: <no names
Hardware: CmStick 1.16

First Device: G: (No Flash)

Status: uDlsabled
€ Enabled until Unplugged
uEnahled
Certified Time: 2010-01-18 10:32:26 Update
Box Time: 2010-08-10 09:51:30
System Time: 2010-08-10 09:51:39

Free Memory: 93 % (366.912 Bytes) Defragment

- Press “Update” to update the time. A connection to the internet will be required.

10.10.2024 Page 165/205

http://wibu.com/download_user.php

12 RTOSWin OEM Branding

12.1 General

By default the ACONTIS RTOS-VM runtime modules show up with ACONTIS product branding.

The RTOSWin solution provider or RTOSWin OEM customer may want to use his own brand labels
instead of the ACONTIS branding.

The ACONTIS RTOS-VM runtime modules provide mechanisms to customize manufacturer specific
product information. This can be achieved by some RTOS-VM specific functions and also by common
Microsoft Windows configuration possibilities.

12.2 Module specific Branding

12.2.1 RtosDrv.sys

The driver RtosDrv.sys hosts several product information like company name, registry base path,
product support internet address and product name. These informations are configured in the file
“RtosDrv.inf” which is used to install the driver. After the installation these values are part of the driver
registry values and provided by the RtosDrv to several RTOS-VM applications.

These values can either be modified in the “RtosDrv.inf” file or later in the registry.

Because the registry path (HKLM\SY STEM\CurrentControlSet\Enum\Root\SY STEM\xxxx\Device
Parameters\Product , where xxxx is a system specific number) contains an computer specific element
this way is only applicable on identical configured systems.

Within RtosDrv.inf the product specific information can be found in the last block at the end of the file.
Additional information about the driver containing the company name (the second last block) might
also be adapted.

Changing a file will invalidate the given driver signature and Windows will warn about an unsigned
driver at installation time. This can be solved with a new signature. How to sign a driver and the
limitations is not part of this document. Please contact ACONTIS support in case a new signature shall
be generated.

12.2.2 RtosVnet.sys and RTOS_ xxx.inf

Information about the driver manufacturer can be found in the the last block of the file and might be
adapted. Changing a file will invalidate the given driver signature and Windows will warn about an
unsigned driver at installation time. This can be solved with a new signature. How to sign a driver and
the limitations is not part of this document.

12.2.3 RtosService.exe

Name and descriptions can be changed using the Windows Service Controller APl to manually
register / un-register the service instead of calling “RtosService.exe INSTALL” and “RtosService.exe
UNINSTALL". Additionally most Setup programs, like for example InstallShield, are providing
functionalities to register and un-register services using custom name and description.

The application embedded icon (displayed in the Explorer) can be replaced using a binary resource
editor tool.

10.10.2024 Page 166/205

12.2.4 RtosControl.exe

The application’s embedded icon (displayed by the Windows Explorer) can be replaced using a binary
resource editor tool. Additionally RtosControl.exe supports replacement of images shown in dialogs by
adding a file to the applications directory:

Dialog Description Required filename
Taskbar / About dialog Application icon RTOSControl.ico
Evaluation dialog Company logo RTOSControl02.bmp
Evaluation dialog Product logo RTOSControl03.bmp

12.2.5 UploadRtos.exe (RTE <=4.x) or RtosUpload.exe (RTE >=5.x)

The application’s embedded icon (displayed by the Windows Explorer) can be replaced using a binary
resource editor tool. Most error message texts can be changed in

- UploadRtos.dll (RTE <=4.x)

- RtosLib32.dll and RtosLib64.dll (RTE >=5.x)

using a resource editor. As an alternative a customer written Uploader.exe could be used.

12.2.6 RtosPnp.sys

The Windows Device Manager shows an ACONTIS specific icon for the Rtos device class, which can
be changed. This icon is part of the RtosPnplnstaller.dll which can be found in windows\system32
directory and the Rtos-Infs directory. There are several possibilities to change the icon:
1. Use an resource editor to edit the dIl and change the icon
2. Use an resource editor to edit the dil and change add an additional icon + change the value of
“Icon” which can be found twice in each RTOS_xxx.inf.
A value of “0” represents the first icon of the dll, the value “1” is reserved.
3. Change the value of “lcon” which can be found twice in each RTOS_xxx.inf to a negative
value.
Negative values represent the system predefined icons. “-18” for example represents the
“Unknown” icon (18).
Changing a file will invalidate the given driver signature and Windows will warn about an unsigned
driver at installation time. This can be solved with a new signature. How to sign a driver and the
limitations is not part of this document.

To update a system where RtosPnplinstaller.dll is already installed with a new icon humber you must
change the value of “lcon” in at least one of the RTOS_xxx.inf files, then right-click on the modified file
and choose “install”. After that the RTOS device class should use the new icon (perhaps a reboot
might additionally be required).

10.10.2024 Page 167/205

13 Windows Update considerations

We strongly recommend using Windows LTS version to avoid feature update problems.

Nevertheless it is required to ensure the correct system configuration after updates are applied. Since
this is often done during a (re)boot the check should be after booting, but before starting RTOS.

We provide the following example script for such a task. There are some configurations which must be
adapted like for example

- Configuration path

- Image path

- Devices to be assigned

The “Device instance path”, as used by the script for RTOS device assignment and configuration, can
be found in Windows device manager device properties.

File Action View Help
o F|E HE P EXE Intel(R) 82574L Gigabit Network Connection £2 Properties X

A _ -
vy GTT VM_ 1F'H2XE4E Events Resources Power Management
ij| Audio inputs and outputs General Advanced Drriver Details

% Batteries

EH Computer [g] Intel{R) 82574L Gigabit Network Connection #2
= Disk drives
L& Display adaptors. Property
= DVDYCD-ROM drives
iy Human Interface Devices
=g |DE ATA/ATAPI controllers Value
=2 Keyboards
A . . PCIWWEN_8086&8DEY_10D3&SUBSYS_07D015AD&REY_00WODDC29FFF
@ Mice and other pointing devices
[Menitors
~ [0 Network adapters
I? Intel(R) 82574L Gigabit Metwerk Connection
I? Intel(R) 82574L Gigabit Network Connection £2
I? Realtime Q5 Virtual Network Adapter
ﬁ Ports (COM & LPT)
™ Print queues
[Processors
B Software devices
Iy Sound, video and game controllers < >
S Storage controllers

i3 System devices
@ Universal Serial Bus controllers Cancel

Device instance path w

10.10.2024 Page 168/205

Example code:

@ECHO OFF
SETLOCAL

REM Function:

REM To ensure a concrete system- / device- / memory- configuration

REM

REM Requirements:

REM This function must be called with administrator priviledges to work properly.
REM

REM Recommendations:

REM - Use a Windows LTS version to prevent unexpected behaviour caused by feature updates.
REM - Config file entry:

REM [Upload]

REM "BootCodeReservationForce"=dword:1 ; prevent additional reboot

REM

REM History:
REM 20201120,GTt New: Created
REM

REM Configuration settings

REM TODO: Change to meet your requirements.
REM

REM Reminder:

REM Variable 'WORKSPACE' is also required by SystemManager generated config files so it

REM should be valid when starting RTOS.
REM
SET /A "CPUCOUNTWIN=2"

SET "WORKSPACE=C:\Users\rte\AppData\Roaming\acontis technologies\workspaces\default"
SET "RTECFG=%WORKSPACES%\config\startup.config"
SET "RTEIMG=%WORKSPACE$\RtFiles\Loader.bin"

REM Global variables
SET /A "REBOOTREQUIRED=0"

REM = = m o
REM Environment checks

REM Check for RTE ROOT environment variable
IF NOT DEFINED RTE_ROOT (
ECHO ERROR: Environment variable R
GOTO ExitError
)

ROOT not defined

REM Check for Uploader

IF NOT EXIST "SRTE ROOT%RtosUpload.exe" (
ECHO ERROR: Could not find "$RTE_ROOT%RtosUpload.exe"
GOTO ExitError

)

ECHO INFO: Using Uploader "SRTE_ROOT%RtosUpload.exe'

SET "RTEUPLOAD="%RTE ROOT%RtosUpload.exe" -nosleep -nowait"

REM Check for driver directory

IF NOT EXIST "S$RTE ROOT$Drivers\RTOS Installer.inf" (
ECHO ERROR: Could not find "$RTE_ROOT%RtosUpload.exe'
GOTO ExitError

)

ECHO INFO:

ng drivers from "$RTE ROOT%$Drivers\"

REM Check for admin rights: "net.exe session" will fail without them
>NUL 2>&1 net.exe session
IF $ERRORLEVELS% NEQ 0 (

ECHO ERROR: Administrator rights are required

GOTO ExitError

REM == = = o
REM Restore Device Configuration

REM = — o o o
REM TODO: Comment out or change to meet your requirements!
ECHO INFO: Devices - Stop any running RTOS before device configuration

>NUL $RTEUPLOADS -x

ECHO INFO: Devices - ensuring RtE device support
$RTEUPLOAD% -device "-noui rte install -inf:\"%RTE ROOT%Drivers\RTOS_ Installer.inf\""
CALL :CheckRteRetVal "$ERRORLEVELS%"

10.10.2024 Page 169/205

IF ERRORLEVEL 1 GOTO ExitError

ECHO INFO: Devices - ensuring assignment of COMI.
$RTEUPLOAD% -device "-noui rte add -inf:\"S$RTE ROOT%Drivers\" @ACPI\PNPO501\1"
CALL :CheckRteRetVal "$ERRORLEVELS%"

IF ERRORLEVEL 1 GOTO ExitError

ECHO INFO: Devices - ensuring assignment of a network card.
$RTEUPLOAD% -device "-noui rte add -inf:\"$RTE ROOT%Drivers\"
@PCI\VEN 8086&DEV_10D3&SUBSYS 07D015AD&REV_00\000C29FFFF2C515C00"
CALL :CheckRteRetVal "$ERRORLEVELS%"

IF ERRORLEVEL 1 GOTO ExitError

ECHO INFO: Devices - ensuring
$RTEUPLOAD% -device "-noui rte configure -int mode:1
@PCI\VEN_8086&DEV_10D3&SUBSYS 07D015AD&REV_00\000C29FFFF2C515C00"
CALL :CheckRteRetVal "%ERRORLEVELS"

IF ERRORLEVEL 1 GOTO ExitError

1g polling mode for the network card.

REM === = m o o
REM Restore System Configuration

REM = — ——m oo o
REM TODO: Comment out or change to meet your requirements!

REM Ensure Windows uses the correct number of processors {always required}.
CALL :CheckBcdVal "Current" "NumProc" "S$SCPUCOUNTWINS"
IF ERRORLEVEL 1 GOTO ExitError

REM Ensure APIC is not used by host {required when 1lst core is a shared core}
CALL :CheckBcdval "Current" "UsePlatformTick" "Yes"
IF ERRORLEVEL 1 GOTO ExitError

REM Ensure BADMEMORY is not accessable {always required}
CALL :CheckBcdval "Current" "BadMemoryAccess" "No"

IF ERRORLEVEL 1 GOTO ExitError

CALL :CheckBcdval "BadMemory" "BadMemoryAccess" "No"

IF ERRORLEVEL 1 GOTO ExitError

REM Disable Virtualization based security {required when using RA reservation: Firmware!=UEFI
and OS requires "MemoryStartAddress" }.

CALL :CheckRegVal "HKLM\System\CurrentControlSet\Control\Session Manager\Power"
"HiberbootEnabled" "O0xO0"

IF ERRORLEVEL 1 GOTO ExitError

REM Ensure APIC is not in unsupported x2 mode {always required}.
CALL :CheckBcdVal "Current" "x2ApicPolicy" "Disable"
IF ERRORLEVEL 1 GOTO ExitError

REM Ensure Hyper-V is disabled {always required}.
CALL :CheckBcdvVal "Current" "HypervisorLaunchType" "Off"
IF ERRORLEVEL 1 GOTO ExitError

REM Disable Virtualization based security {always required}.

CALL :CheckRegVal "HKLM\System\CurrentControlSet\Control\DeviceGuard"
"EnableVirtualizationBasedSecurity" "O0x0"

IF ERRORLEVEL 1 GOTO ExitError

REM Restore Memory Configuration
REM ——m— oo o o

REM Start RTOS
REM
REM Known obstacles
REM - When Hyper-V is enabled, VMF VT-x is configured and RTOS requires "MemoryStartAddress"
Uploader will fail with 0x0531440A.
REM To avoid this use memory configuration update instead of starting RTOS.
REM
IF $SREBOOTREQUIREDS EQU 0 (
REM Reboot not yet required. Try to start directly to save some time.

ECHO INFO: Starting RTOS: SRTEUPLOAD% -config "'SRTECEFGS'" "$SRTEIMGS"
SRTEUPLOADS -config "'SRTECEGS'" "SRTEIMGS"
) ELSE (
REM Reboot already required. Try to save another by checking only memory configration.
ECHO INFO: Checking memory configuration: $RTEUPLOADS% -memcfg "-a'" -config "'%RTECFG%'"

$RTEUPLOADS -memcfg "-a" -config "'SRTECFGS'"
)
CALL :CheckRteRetVal "S$ERRORLEVELS"
IF ERRORLEVEL 1 GOTO ExitError

10.10.2024 Page 170/205

REM = m o m oo
REM DONE!
RE M == = o
TIF $SREBOOTREQUIREDS NEQ 0 (

GOTO ExitReboot
)
GOTO ExitOk

REM — == —mmmm i m oo
REM Sub programs
REM —————m oo o -

REM — === mmm - m i m oo
:CheckBcdval

SETLOCAL

SET "TMP_Store=%~1"

SET "TMP_ Property=%~2"

SET "TMP Value=%~3"

ECHO INFO: Checking BCD "{%TMP_Store%}" "$TMP_Property%"
bcdedit.exe /enum {%TMP_ Store%} |find /I "$TMP_ Property$" |find /I "$TMP Value$" >NUL
IF ERRORLEVEL 1 (
bcdedit.exe /set {$TMP_Store%} $TMP_ Property% $TMP Value% >NUL
IF ERRORLEVEL 1 (
ECHO ERROR executing "bcdedit.exe /set {(%TMP_Store%} $TMP Property% $TMP_Value%”
GOTO ExitError
)
ECHO UPDATE: "{$TMP_Store%}" "$TMP_ Property%" to "$TMP Value%'
SET /A "REBOOTREQUIRED=1"
)
ECHO.
REM Use round brackets to get var value beyond 'endlocal'
(
ENDLOCAL
SET /A "REBOOTREQUIRED=%REBOOTREQUIREDS%"
)
GOTO ExitOk

REM ——————— - m
:CheckRegVal

SETLOCAL

SET "TMP_Key=%~l"

SET "TMP ValName=%~2"

SET "TMP ValData=%~3"

ECHO INFO: Checking registry "$TMP Key%" "%$TMP ValName%"
reg.exe QUERY "S$TMP Key%" /v "$TMP ValName%" |find /I "$TMP ValData$%" >NUL
IF ERRORLEVEL 1 (
reg.exe ADD "$TMP Key%" /v "$TMP ValName%" /t REG _DWORD /d $TMP ValData% /f >NUL
IF ERRORLEVEL 1 (
ECHO ERROR executing "reg.exe ADD '$TMP_Key%' /v '$TMP_ValName$%' /t REG DWORD /d
$TMP_ValData$% /1"
GOTO ExitError
)
ECHO UPDATE: " "$TMP_Key%'" "$TMP_ValName%" to "%TMP_ValData%"
SET /A "REBOOTREQUIRED=1"
)
ECHO.
REM Use round brackets to get var value beyond 'endlocal'
(
ENDLOCAL
SET /A "REBOOTREQUIRED=%REBOOTREQUIRED%"
)
GOTO ExitOk

REM ——mm oo oo
:CheckRteRetVal

SETLOCAL

SET /A "TMPiError=9~l & OXFFEFE"™

IF $TMP _Error% EQU 0 (
GOTO ExitOk
) ELSE IF %TMPiError% EQU 260 (
IF $SREBOOTREQUIREDS NEQ 1 (
ECHO ERROR : HiberbootEnabled set but not detected/corrected.
GOTO ExitError
)
) ELSE IF %TMPiError% EQU 261 (

10.10.2024 Page 171/205

IF $REBOOTREQUIRED% NEQ 1 (
ECHO ER X : Ba
GOTO ExitError

)

) ELSE IF %TMPiError% EQU 262 (
IF $REBOOTREQUIRED% NEQ 1 (

ECHO ER 2 visorLat
GOTO ExitError

)

) ELSE IF %TMP_Error% EQU 263 (
IF $REBOOTREQUIRED% NEQ 1 (

ECHO ERROR : En uali
GOTO ExitError

)

) ELSE IF %TMP_Error% EQU 4226 (
ECHO ! OO0T : F] I to t
SET /A "REBOOTREQUIRED=1"

) ELSE IF %TMP_Error% EQU 14932 (
IF $REBOOTREQUIRED% NEQ 1 (

ECHO ERROR : Local ic 1
GOTO ExitError

)

) ELSE IF %TMP_Error% EQU 14933 (
IF $REBOOTREQUIRED% NEQ 1 (

ECHO E OR : L ic 1
GOTO ExitError

)

) ELSE (

EXIT /B %~1

Hyper

to u

1Cc 1 11

1C 1S ru

JIK 2 LOCé

)

REM Use round brackets to get var value beyond 'endlocal'
(
ENDLOCAL
SET /A "REBOOTREQUIRED=%REBOOTREQUIREDS%"
)
GOTO ExitOk

REM == = =
REM Exits
REM ———m — oo

:ExitReboot
ECHO INFO: Reboot
EXIT /B 2

:ExitError
EXIT /B 1

:ExitOk
EXIT /B O

REM —— oo o
REM End Of File
REM = — = = m o

Exit codes::
- 0=RTOS was successfully started
- 1 =an unknown error occurred and RTOS could not be stated.
- 2 =areboot is required before RTOS can be started.

10.10.2024 Page 172/205

14 Appendix A — Platforms and performance

14.1 Real Time behavior and the RTOS-VM

When running on top of the RTOS-VM a RTOS can interrupt every Windows application and device
driver at any time when running in shared mode. In exclusive mode the RTOS runs completely
independent from and fully parallel to Windows.

This guarantees real-time performance and deterministic behavior for the RTOS.

However, one must nonetheless be careful about using PC cards that make long DMA (direct memory
access) transfers, for DMA transfers can considerably increase interrupt latency time.

For example, consider a graphics card that wants to copy graphics data from PC memory into its own
graphics memory. Normally, the CPU has access to the PC memory, but if the graphics card adapter
requests a DMA transfer, the CPU gives up control of the bus. While the graphics card monopolizes
the bus (to copy data into its own RAM), the CPU must wait until the DMA transfer has completed.
While the CPU is waiting to reacquire the bus, it can neither respond to interrupts nor execute code in
the usual fashion.

This problem is so tightly bound to an inflexible aspect of the hardware that the RTOS-VM can do
nothing to effectively relieve the situation.

14.2 Platform Evaluation

Prior to using the RTOS-VM you have to verify that the PC platform where the RTOS is supposed to
run will fulfill your real-time requirements. While keeping your real-time criteria in mind, you must
determine that the interrupt latency times in your system are satisfactory. If it so happens that the
latency is greater than you expect, you should investigate to determine if this is being caused by DMA
operations. And if DMA is indeed the problem, you should then try to discover which hardware device
is causing it, for in many cases the DMA-problem can be solved.

To evaluate the real-time behavior of your PC platform you need to use two types of tools: one to
generate load on Windows and a second to measure real-time response in the RTOS.

Of the readily available tools for creating loads in Windows, a good one is PassMark’s “Burnin Test,” a
shareware tool. Refer to http://www.passmark.com/products/bit.htm. With this tool you can, for
example, specify which hardware device to test, how long a test should last, and so on.

To measure real-time latency, you will have to use a test application running on the RTOS. Most
RTOS-VM based solution will ship such a tool called “RealtimeDemo”:

- RTOS-32: Start image “RealtimeDemo.bin”
- CE: Call “RealtimeDemo” from shell
- VxWorks: Call “demoStart” from shell

Even on slow Intel Atom or Celeron systems that run with a nominal of a 500 MHz CPU, the interrupt
latency should never exceed approximately 30 to 40 microseconds. Using such a test application
together with a tool like “Burnin Test”, you can evaluate your platform, disclosing any devices which
may be detracting from your system'’s real-time capabilities.

10.10.2024 Page 173/205

http://www.passmark.com/products/bit.htm

14.3 Intel(R) Resource Director Technology (RDT)
14.3.1 Cache Allocation Technology (CAT)

14.3.1.1 How it works

RDT-CAT can be used to optimize processor cache usage by dividing the cache into partitions and
selecting when to use which partition.

The partitions are configured at Class Of Service (COS) registers. These CAT-COS registers are
shared among all cores that share the same cache.

Each CPU core can individually select the COS to be used. It has to be noted that this COS-selector is
used for all supported COS-types;

this means, if CAT and Memory Bandwidth Allocation (MBA) are available it activates both, the CAT-
COS and the MBA-COS.

The number of CAT-COS registers and the length of the settable bits are CPU specific and can be

queried using CPUID.

Using the uploader utility, details about RDT availability and configuration can be determined:
"RtosUpload.exe /nosleep /nowait /idshow 6,0,8"

For more information, please contact your support.

14.3.1.2 CAT Default settings for all acontis real-time products

Without any configuration settings, the following default settings will be used:

e CAT is used when it is available.

e Two COS registers (0..1) are configured.
COSO0: CAT= Upper half of Cache, MBA=Limited Bandwidth
COS1: CAT=Lower half of Cache, MBA=Unlimited Bandwidth

¢ Windows uses the configuration stored in register COS0O

e The RTOS uses the configuration stored in register COS1

¢ If multiple independent caches/partitions exist, they will all be configured with the same default
values above.

10.10.2024 Page 174/205

14.3.1.3 CAT Config-File settings

The default CAT settings can optionally be changed.

Below, the related CAT settings are described shortly.

The values used in this example correspond with the default settings that are used in case the
respective configuration parameter does not exist.

In this example CPU 0..2 are used by Windows and 3 by RTOS.

[VmE\RDT]
"CatAllowed"=dword:1 ; 1=Enable (Default if value is omitted), O=Disable

; Upper half of L2 cache; cache bit mask (Example for E3940 supporting 8 bits, each bit
corresponds to 1/8 of the whole cache)

"CatMaskL2Cos0CpuO"=dword:F0

"CatMaskL2Cos0Cpul"=dword:F0

"CatMaskL2Cos0Cpu2"=dword:F0

"CatMaskL2Cos0Cpu3"=dword:F0

; Lower half of L2 cache; cache bit mask (Example for E3940 supporting 8 bits, each bit
corresponds to 1/8 of the whole cache)

"CatMaskL2CoslCpuO"=dword:OF

"CatMaskL2CoslCpul"=dword:OF

"CatMaskL2CoslCpu2"=dword:OF

"CatMaskL2CoslCpu3"=dword:OF

;... the maximum number of CAT-COS depends on CPU. E3940 supports 4.

[Host\RDT]
"CosIdxCpuO"=dword:0 ; CPUO: COSO - Upper half of Cache
"CosIdxCpul"=dword:0 ; CPUl: COSO - Upper half of Cache
"CosIdxCpu2"=dword:0 ; CPU2: COSO0 - Upper half of Cache
[Rtos\RDT]
"CosIdxCpu3"=dword:1 ; CPU3: COS1 - Lower half of Cache

14.3.1.4 Optimized CAT setting for Intel E3940

E3940 has 2 L2 caches shared between core 0-1 and 2-3.
Thus, the default settings above may not be optimal.

The settings below are recommended instead.

Only the differences to the default settings are listed.

- Using core 0..2 for Windows and 3 for RTOS:
[Vmf\RDT]
"CatMaskL2Cos0CpuO"=dword:FF
"CatMaskL2Cos0Cpul"=dword:FF

- Using core 0,1 for Windows and 2,3 for RTOS:

[Vmf\RDT]
"CatMaskL2Cos0CpuO"=dword:FF
"CatMaskL2CosOCpul"=dword:FF
"CatMaskL2Cos0Cpu2"=dword:FF
"CatMaskL2Cos0Cpu3"=dword:FF

[Rtos\RDT]
"CosIdxCpu2"=dword:0
"CosIdxCpu3"=dword:0

10.10.2024 Page 175/205

14.3.1.5 CAT Code Data Prioritization (CDP)

A CPU might support CDP, which allows to split cache between code and data by using two separated
masks. CDP will not be used on default and must be enabled by config entry.
In this example CPU 0..2 are used by Windows and 3 by RTOS.

[VmE\RDT]
"CatAllowed"=dword:1 ; 1=Enable (Default if value is omitted), O=Disable
"CatCdpAllowed"=dword:1 ; 1=Enable, 0=Disable (Default if value is omitted)

; Upper half of L3 cache; cache bit mask (Example for supporting 8 bits, each bit
corresponds to 1/8 of the whole cache)
;Settings to use without CPD:
"CatMaskL3Cos0CpulO"=dword:F0
"CatMaskL3Cos0Cpul"=dword:F0
"CatMaskL3Cos0Cpu2"=dword:F0
;Settings to use with CPD:
"CatMaskCodeL3Cos0Cpul0"=dword: 30
"CatMaskDatalL3Cos0Cpul0"=dword:CO
"CatMaskCodeL3Cos0Cpul"=dword: 30
"CatMaskDatalL3Cos0Cpul"=dword:CO
"CatMaskCodeL3Cos0Cpu2"=dword: 30
"CatMaskDatalL3Cos0Cpu2"=dword:CO

; Lower half of L3 cache; cache bit mask (Example for supporting 8 bits, each bit
corresponds to 1/8 of the whole cache)

;Settings to use without CPD:

"CatMaskL3CoslCpu3"=dword:OF

;Settings to use with CPD:

"CatMaskCodeL3CoslCpu3"=dword:03

"CatMaskDataL3CoslCpu3"=dword:0C

;... the maximum number of CAT-COS depends on CPU - currently up to 16. Enabling CDP cuts
them by half because each seting uses two masks.

[Host\RDT]
"CosIdxCpuO"=dword:0 ; CPUO: COSO - Upper half of Cache
"CosIdxCpul"=dword:0 ; CPUl: COSO - Upper half of Cache
"CosIdxCpu2"=dword:0 ; CPU2: COSO - Upper half of Cache
[Rtos\RDT]
"CosIdxCpu3"=dword:1 ; CPU3: COS1 - Lower half of Cache

10.10.2024 Page 176/205

14.3.2 Memory Bandwidth Allocation (MBA)

14.3.2.1 How it works

RDT-MBA can be used to limit the memory bandwidth being used by a CPU core.

In the same was as for CAT, if using MBA then different bandwidths can be configured at CPU core
independent Class Of Service (COS) registers.

Each CPU core can individually select the COS to be used. It has to be noted that this COS-selector is
used for all supported COS-types;

this means, if CAT and MBA are available it activates the CAT-COS and the MBA-COS.

The number of MBA-COS registers and its possible value are CPU specific and can be queried using

CPUID.

Using the uploader utility, details about RDT availability and configuration can be determined:
"RtosUpload.exe /nosleep /nowait /idshow 6,0,8"

14.3.2.2 MBA Default settings for all acontis real-time products

e MBA is used when it is available.

e the memory bandwith for Windows is limited to 50% (using the configuration stored in register
COS0)

e the memory bandwith for the RTOS is not limited (using the configuration stored in register
COS1)

14.3.2.3 MBA Config-File settings

The default MBA settings can optionally be changed.

Below, the related MBA settings are described shortly.

The values used by default depend on the CPU type used.

How to set the value is described in the Intel Manuals, please ask acontis support for details.

[VmE\RDT]
"MbaAllowed"=dword:1 ; 1=Enable (Default if value is omitted), O=Disable

; 50%: max/2 on linear and 1 on non-linear throttling; bandwith throttling value (the
value depends on the CPU type used)

"MbaThrottleCos0CpulO"=dword:1

"MbaThrottleCos0Cpul"=dword:

"MbaThrottleCos0Cpu2"=dword:

"MbaThrottleCos0Cpu3"=dword:

=

; Unlimited

"MbaThrottleCoslCpuO"=dword:
"MbaThrottleCoslCpul"=dword:
"MbaThrottleCoslCpu2"=dword:
"MbaThrottleCoslCpu3"=dword:

o O oo

;... the maximum number of MBA-COS depends on CPU. (E3940 CPUs do not support MBA)

[Host\RDT]
"CosIdxCpuO"=dword:0 ; CPUO: COSO - Limited Bandwidth
"CosIdxCpul"=dword:0 CPUl: COSO - Limited Bandwidth
"CosIdxCpu2"=dword:0 CPU2: COSO - Limited Bandwidth

[Rtos\RDT]
"CosIdxCpu3"=dword:1 ; CPU3: COS1 - Unlimited Bandwidth

10.10.2024 Page 177/205

14.4 Reducing DMA latency problems

If you have determined that DMA is undermining your system’s ability to serve as a real-time platform,

the following list suggests a number of things you can do:
o Disable 3D hardware acceleration in your graphic settings.

WT:

@n\;‘/-v|__ «lAIIControIPaneIItems v Display » Screen Resolution I

File Edit View Tools Help

Change the appearance of your display

- ‘ ¢’| | Search Control Panel

Display:

[1. Generic Non-PnP Menitor on Standard VGA Graphics Adapter «

1280 = 1024

Resolution:

Make text and other items larger or smaller

What display settings should I choose?

| Adapter | Monitor || Troubleshoot | Color Management

Generic Non-PnP Monitor and Standard VGA Graphics Adapter Pro... [=

If your current display driver allows you to change settings, dick
this button to troubleshoot problems with your computer's
display:

(B e sewes |

[y

[oK] [Cancel

Display Adapter Troubleshooter

()

Are you having problems with your graphics hardware? These
settings can help you troubleshoot display-related problems.

-

Hardware acceleration

Manually control the level of acceleration and performance supplied by
your graphics hardware, Use the Display Troubleshooter to assist you
in making the change.

Hardware acceleration: Full

Disable all accelerations. Use this setting only if your computer
frequently stops responding or has other severe problems.

e Change other settings of your graphics card, i.e., reduce the resolution and/or the number of
displayed colors. In some cases, you may want to try a different graphics card or a different
graphics card driver. You might try using a resolution of 640x480 and 8 bit colors, the least -
demanding settings, to determine if a latency problem is truly related to the graphics card
adapter.

e Try adjusting the advanced BIOS settings for the graphics card. Experiment with limiting the
size or duration of DMA accesses.

e Try changing the settings of your network card adapter. If it uses DMA, try another network
adapter that does not.

e Eliminate USB or IEEE 1394 devices that use extensive DMA transfers (e.g. USB hard disks
or CDROM drives), or try changing their device driver settings.

10.10.2024

Page 178/205

e Use PIO transfer mode for IDE devices, as illustrated below:

File Action View Help

= | FE HZ ® &S

- {8 Computer - .
- Disk drives ATA Channel 0 Properties

=
l_:‘ gs;:,ag;;gt:r;mes - Advanced Seftings | Driver | Details | Resources
g IDE ATA/ATAPI contr
& ATA Channel 0
& ATA Channel 1
g Standard Dual Chi
- § IEEE 1394 Bus host col Devices:
= Keyboards Target Id Device Type Cument Mode
&4 Mice and other point 1 ATAPI Cdrom Ukra DMA Mode 2
| Monitors
¥ Metwork adapters
[D Processors
> -ak Realtime OS Devices
» 45 Storage controllers
System devices
»-§ Universal Serial Bus ci Device Froperies

Channel Properties

Supported Devices 2

[7] Enable DMA

10.10.2024 Page 179/205

14.5 CPU throttling
There are several CPU throttling mechanisms being used in modern CPUs for energy savings getting
in conflict with realtime requirements:
- CI1E (Enhanced Halt State)
reduces the clock rate when the CPU goes idles.
- Intel® SpeedStep™ / “EIST” (“Enhanced Intel SpeedStep Technology”)
changes the clock rate depending on the current configuration and workload.

14.5.1 Detection
If throtteling becomes active on a PC depends on its CPU, BIOS, OS and RTOS configuration.

CPU throttling can for example be detected using Windows “Resource Monitor”;
® Resource Monitor = (=

File Monitor Help

eniew | CPU | Memory | Disk | Network

A A
cPU B 3% CPU Usage E|_ 93% Maximum Frequenﬂ A > Views |»
-
Image PID Descrip... Status Threads CPU Averag.. ™ CPU 100%
[imag p g
|:| perfmon.exe 1824 Resour.. Running 16 2 393
|:| svchost.exe (NetworkService) 304 Host Pr... Running A0 2 2,61
|:| System 4 MT Ker... Running 111 3 1.56
|:| System Interrupts - Deferr... Running 0 0.93
|:| dwm.exe 796 Deskto.. Running]] 0.58
|:| svchost.exe (LocalserviceMo.., 1143 Host Pr... Running 24 o 0.23 B e L]
[] explorer.exe 2684 Windo.. Running 48 o 012 &0 Seconds 0%
[esrss.exe 484 Running 8 o 012 Disk 100 KB/'sec
|:| svchost.exe (RPCSS) 672 Host Pr... Running 10 o 0.06
— ana N . v ul
l
.]
| Disk [T 1024 KB/sec Disk /0 M 53¢ Highest Active Time e | I
Hl
| Network I 27 Kbps Network 1/0 B 03¢ Network Utilization e | H
Ll
Memor 0 Hard Faults/sec 35% Used Physical Memo), |
| Y . ¢ = v v ¥ || Network 1Mbps 5 | ¥

When throttling is enabled the maximum frequency is fluctuating.

Throttling settings may be processor specific so the check should be done on the realtime assigned
processors. Therefor “RealtimeDemo” can be used which is part of RtE:

- RTOS-32: Start image “RealtimeDemo.bin”

- CE: Call “RealtimeDemo” from shell
VxWorks: Call “demoStart” from shell

When throttling is enabled the CPU clock rate is fluctuating.

10.10.2024 Page 180/205

nother indicator for throttling is when TSC differs from HPET period up to 50.

14.5.2 How to disable

Windows 7 and newer
includes a standard idle routine already using “hit” - the optimized idle routine of the CPU driver uses
the advanced “mwait” for throttling.
This means “Disable processor driver” is required and additionally one of the following actions:
- Disable Speed/Step and C1E by BIOS
- OR Disable Speed/Step and C1E by VMF

Please run RealtimeDemo again after changes to ensure throttling was successfully disabled.

145.2.1 PCBIOS

The BIOS may contain CPU configuration options called
- “C1E Support”
- “Intel® SpeedStep™” or “EIST” (“Enhanced Intel SpeedStep Technology”)
- Something containing “throttling”

These options should be disabled.

14.5.2.2 Processor Driver

The processor driver can be disabled in the Windows registry.
- Start “regedit”
- Navigate to “HKLM\SYSTEM\CurrentControSet\services\Xxx” where “xxx” can be
0 “Processor” (processr.sys)
o “intelppm” (intelppm.sys)
0 “AmdK8” (amdk8.sys)
o “AmdPPM” (amdppm.sys)
depending on the processor.
- Change the value of “Start” from to “4” to disable the driver.
A reboot is required to use the new configuration.

10.10.2024 Page 181/205

14.5.2.3 VMF
VMF can disable CPU throttling by reconfiguring each CPU used by RTOS. This will be done during
RTOS startup. This feature is disabled on default but can be enabled using the following config file
entry:

[Optimizations]

"ValueC1"=dword:1 ; omitted = 0 = disable, 1 = enable,
; Other value = enable + force model (Exmpl: 0x617=CPU Family 6 Model 23)
; Do no force a model without being prompted to do!

14.6 System Management Interrupt (SMI)

Another source of latency problems up to milliseconds are system management interrupts.
They are hardly to detect without an external clock reference.

i VIOO - PuTTYte = B

Newer CPUs contain a SMI counter being evaluated by the RealtimeDemo.

Possible reasons for SMI’s are:
- “USB Legacy support”
- Can be disabled in most BIOS.
- Some Video driver use SMI.
- Use another driver for example Standard VGA.

14.6.1 VMF

In combination with Hardware Virtualization support (see “VtAllowed” in chapter 5.5) there is another
option to suppress software SMls:

[Optimizations]
"ValueD1"=dword:1 ; omitted = 0 = disable, 1 = enable

10.10.2024 Page 182/205

15 Appendix B — Troubleshooting

A variety of common errors can occur when starting up the RTOS for the first time. A few are
mentioned below:

15.1 Setup fails

Setup creates a log-file in the Windows. Its name depends on the product and version.
For example EC-Win(RTOS-32) might create the logfile “C:\Windows\EC-Win(RTOS-32)
6.0.00.07.LOG”. Please check this file for additional information.

Check- especially on a new platform — if you’re using the latest RtE version.
If installing from network or inside VMWare, first copy all files locally and run setup locally.

On InstallScript engine errors sometimes it needs to be updated. RtE Setup requires version
10:

http://support.installshield.com/kb/files/Q108158/IsScript101.zip
http://consumerdocs.installshield.com/selfservice/viewContent.do?externalld=Q108158&slicel
d=1

Another InstallShield Scripting Runtime error might be soled by:
http://consumerdocs.installshield.com/selfservice/viewContent.do?externalld=Q108340&slicel
d=1

This message box

I_.' % The operating system is not adequate for running EC-Win(RT05-32)
&Y 600010

can appear when running Setup on an OS not supported or when application compatibility
mode is activated for setup or a component.

il setup.exe Properties setup.exe Properties
Security Details Previous Versions Compatibility for all users
General Compatibility Digital Signatures
X . iy . . " If you have problems with this program and it worked correctly
tithis program isnt working comectly on this version of Windows. on an earlier version of Windows, select the compatibility mode

try running the compatibility troubleshooter that matches that earlier version

| Run compatibility troubleshooter |

Compatibility mode

How do | choose compatibility settings manualy?

Compatibility mode
[] Run this program in compatibility mode for:

Windows XP (Service Pack 2)

Settings
[reduced coler mode

Settings

[Reduced colar mode 8-hit (256) color
8-bit {256) color |:| Run in 640 x 480 screen resolution
[Run in 640 x 480 screen resolution [Disable display scaling on high DPI settings
[] Disable display scaling on high DP| settings |:| Enable this program to work with SkyDrive files
[] Enable this program to work with SkyDrive files [IRun this program as an administrator

[] Run this program as an administrator

Change settings for all users

oK Cancel Apply Cancel Apply
Please ensure compatibility mode is disabled for
- Setup.exe
- C:\Program Files (x86)\Common Files\InstallShield\Driver\10\Intel 32\IDriver.exe
(64bit OS)

- C:\Program Files\Common Files\InstallShield\Driver\10\Intel 32\IDriver.exe
(32 bit OS)

10.10.2024 Page 183/205

http://support.installshield.com/kb/files/Q108158/IsScript101.zip
http://consumerdocs.installshield.com/selfservice/viewContent.do?externalId=Q108158&sliceId=1
http://consumerdocs.installshield.com/selfservice/viewContent.do?externalId=Q108158&sliceId=1
http://consumerdocs.installshield.com/selfservice/viewContent.do?externalId=Q108340&sliceId=1
http://consumerdocs.installshield.com/selfservice/viewContent.do?externalId=Q108340&sliceId=1

15.2 System does not boot

1)

2)

3)

4)

First it should be checked if system can start in Safe Mode.
If this is possible probably a configuration change caused the problem.
For example when multiple large shared memories are configured it is possible the system
has not enough memory remaining to boot. Such a situation can be solved this way:
- Start the system in Safe Mode
- Change the SharedMemory configuration
- Start the RTOS to update with the new configuration
- Reboot the system
The same can be done in case a memory configuration change caused the problem.

If Safe Mode also can’t boot the Windows “repair console” should be used to rename the
driver RtosDrv to prevent it from being loaded:

“ren c:\Windows\System32\drivers\RtosDrv.sys RtosDrv_org.sys”

The repair console can started from the repair boot menu or when booting from the installation
disk. After renaming the driver the console can be left by calling “exit” to reboot the system.
Please contact support in case this solved the problem.

If renaming the driver did not help call “bcdedit /enum {default}” from the repair console:
When it shows a huge “badmemorylist” over multiple pages then please call

“bcdedit /deletevalue {default} badmemorylist”.

When it contains “firstmegabytepolicy = UseAll” then please call

“bcdedit /deletevalue {default} firstmegabytepolicy”.

After the call(s) succeeded the console can be left by calling “exit” to reboot the system.

In case nothing was helpful a startup repair should be done.
On Windows 7 or newer run “Startup Repair”. Sometimes this can be selected from the repair
boot menu and sometimes it is required to boot from the Installation DVD.

10.10.2024 Page 184/205

15.3 Common startup problems

A variety of common errors can occur when starting up the RTOS for the first time. A few are
mentioned below:

15.3.1 IRQ sharing with Windows (10A0)

B Debug Monitor

ERROR: Device Configuration — conflicting devices for interrupt (19
— Intel(R> ICH? Family PCI Express Root Port 4 — 2946

(PCI\UVEN_80886&DEU_2946&SUBSYS_0A0ABAABEREV_02\3&13CABACS&B&E3 >
GIGABYTE GBB36X Controller
(PCINVEN_197B&DEU_2363&SUBSYS_BAAA1458&REV_02\4&24C54F4F&0B&ABE3)
Intel(R> ICH? Family USB Universal Host Controller — 2935
(PCINUVEN_8086&DEU_2935&SUBSYS_50041458&REV_02\3&13CABACS&B&E? >
RTOS PRO/168 compatible PCI card
(PCINUVEN_8086&DEU_1229&SUBSYS_00BCE8B86&REV_0A8\4&1ADDESAS&B&ABFA)
Intel(R> ICH? 2 port Serial ATA Storage Controller 2 - 2926
(PCINUEN_80886&DEU_2926&SUBSYS_BAA21458&REV_082\3&13CABACS&B&FD>

ERROR: Device Configuration — conflicting devices for interrupt (19D

— Intel(R> ICH? Family PCI Express Root Port 4 — 2946

(PCINUEN_8086&DEU_2946&SUBSYS_00ABBABAXREV _B2\3&13COBBACS&A&E3)
GIGABYTE GBB36X Controller
(PCINUEN_197B&DEU_2363&SUBSYS_BO0AA1458&REVU_0A2\4&24C54F4F&A&BBE3 >
Intel(R> ICH? Family USB Universal Host Controller — 2935
(PCINUEN_80886&DEU_2935&SUBSYS_500841458&REVU_B2\3&13COBBACS&A&E? >
RTOS PR0O/1688 compatible PCI card
(PCINUEN_80886&DEU_1229&SUBSYS_0BAC8A86&REV_A8\4&1ADD8BAS&A&ABFABD>
Intel(R> ICH? 2 port Serial ATA Storage Controller 2 — 2926
(PCINUEN_8086&DEU_2926&SUBSYS_B0O0A21458&REU_B2\3&13CABACS&A&FD)>

lUpRtosUnfCreateConfig: (iiBxBBAA1BABY — Device Configuration setup failed

Causes:
The IRQ of the Rtos-Device is shared with a Windows-Device. Rtos-Devices need an exlusive IRQ.

VG' LLERS I BP A LIILTHR G L2 1 iy JJus LIHNIgnivocu 1IUsL LUHuunet = L2720

& (PCI) 18 Texas Instruments OHCI-konformer IEEE 1394-Hostcontroller
<§' (PCI) 19 GIGABYTE GBB36X Controller
=4 (PCI) 19 Intel(R) ICHS 2 port Serial ATA Storage Controller 2 - 2926
(PCI) 19 Intel{R) ICH3 Family PCI Express Root Port 4 - 2946
(PCI) 19 Intel{R) ICHY Family USB Universal Host Controller - 2935
@4 (PCI) 19 RTOS PROJ100 compatible PCI card)
-% (PCI) 21 Intel(R) ICH3 Family USBE Universal Host Controller - 2938
J (PCI) 22 Microsoft UAA Bus Driver For Hiah Definition Audio

There are several alternatives to solve the problem:

- Put the PCI card into another slot to use another interrupt line, which hopefully doesn’t conflict.

- A PCI express card supporting MSI’s can be configured to use MSI.

- If the RTOS device will be polled the interrupt can be disabled.
Attention: Every normal RTOS driver will require an interrupt. This is only an option in
combination with driver software known not to require the interrupt.

- When the conflicting Windows device is not required it can be disabled by BIOS or Windows
device manager.

- When it is known that the Windows device will never use its interrupt in can be added to the
interrupt ignore list.
Attention: This will lead to unpredictable behaviour case the device anyway uses the interrupt.

10.10.2024 Page 185/205

15.3.2 Error opening include file (107C)

Debug Monitor 3)

Realtime 0S Uploader 7.2.086.08
acontis technologies GmbH
Copyright ® 1994-2008

error opening include file C:\Programme\RT0S32Win\Solutions\AT-EM\Examples\AtemD
emo\RTOS32WIN\Ecat.config at line 8

Error resolve directives...: (i0xB0600187C> — parse error occurred in config pars
er/management

error — cannot generate config data:

==7 Das System Kann den angegebenen Ffad nicht finden.

Press any key to continue..._

Causes:
The path or filename is not correct. The include filename is invalid or it is not located in the selected
path.

15.3.3 Configured RTE memory range not available

When updating from an older version it is possible the currently configured memory range will not be
detected correctly. In this case please

- Remove the current configuration by calling

“RtosUpload.exe /memcfg /u” from a DOS box.

- Reboot the PC

- Start RTOS again (should tell about required reboot)

- Reboot

- Start RTOS (should work now)

Before manually (means not using Setup) updating from one version to another the memory
reservation should be removed first.

15.3.4 Invalid memory configuration (10A4)
Debug Monitor

RtosDrv driver version:
RtosDrv inf version:
RtosDrv installer version:

v e
[\

PR OO0 RREO R

=

RtosUnet driver version:
RtosUnet inf version:
RtosUnet installer version:

RtosPnp driver version:
RtosPnp inf version:
RtosPnp installer version:

r 20 WEN 8T @k

s

RtosService version:
RtosControl version:
virtual machine framework version:

el =T Q) @]

ERROR: RTOS Configuration (B> — invalid memory configuration.
RTOS Conf iguration start(UX1UUWUUYL) sizel ¥) must fit into
global configuration start{ BX2000000) size(BX10006000>

pRtosUmfCreateConfig: (iiBxBBBA168A4> — Rtos Configuration setup failed

to continue...

Causes:

10.10.2024 Page 186/205

MemoryStartAddress isn’t in the range of the RteMemory.
(RteMemoryStartAddress >= MemoryStartAddress <= (RteMemorySize+RteMemoryStartAddress))

MemorySize is too high
MemorySize > RteMemorySize
Or MemorySize+Offset > RteMemorySize

Image is too big
MemorySize < Image Size

Memory size is too small
MemorySize must be at least 0x400000

B Debug Monitor

RtosDrv driver version:
RtosDrv inf version:
RtosDrv installer version:

w
.o
=

C R @O0 RO R

=

RtosUnet driver version:
RtosUnet inf version:
RtosUnet installer version:

RtosPnp driver version:
RtosPnp inf version:
RtosPnp installer version:

RtosService version:
RtosControl version:
virtual machine framework version:

e e Q] Q]

HUh W OFh @

s s
T D0 WEN e Sk

s

ERROR: RTOS Configuration (B) — memory size (BX3808080808) to small — minimum is BOX4
515151515 18

UpRtosUmfCreateConfig: (HBxA00B18A4) — Rtos Configuration setup failed

ress an to continue...

15.4 Windows Clock Delay

In case the Windows clock seems to be delayed

- Using SharedCore check if the clock correction is enabled

- Using ExclusiveCore check if disabling the clock correction solves the problem.
See chapter “8.1Clock Correction” for configuration details.

15.5 Windows Network Stack

In some circumstances it is possible the Windows netwok IP stack becomes corrupt.

This can be identified for example
- If opening TCP/IP parameters of a network connection results in an error message
- If “ipconfig -all” shows another IP address than TCP/IP configuration dialog

When the stack is corrupted it can be reset by calling

“netsh int ip reset c:\resetlog.txt”

from an administrator command line.

After a reboot all IP settings will be reset. All manual settings have to be configured again.

10.10.2024 Page 187/205

15.6 Network Share access

In case the network share can’t be accessed by RTOS please check the following:
- Can the network folder be accessed from the same and also from another PC?
- Can RTOS ping the PC using the computer name (not the I1P)?
- Is the config file entry for network share and password correct?
- Does disabling of all protocols and services of “Realtime OS Virtual Network Adapter”, which
are not required, help?

-
U Local Area Connection 3 Properties u

™

NEtWDI'kiI'IQ Shanng | dl

Connect using:

LF Realtime OS Vitual Network Adapter

This connection uses the following tems:

& Cliert for Microsoft Networks

[] J® 005 Packet Scheduler

E_,I File and Printer Sharing for Microsoft Networks

[] -t Intemet Protocol Version & (TCP/IPvE)
Vs Protoco Version 4 (TCP/IPv4)

[- Link-Layer Topelogy Discovery Mapper 1/0 Driver
[] & Link-Layer Topology Discovery Responder

[Install ...] Uninstall Properties

Description

Transmission Control Protocol/Intemet Protocal. The default
wide area network protocol that provides communication
across diverse interconnected networks.

0K || Ccancel

10.10.2024 Page 188/205

15.7 Timer frequency

All VMF timer are depending on the Local APIC timer. Its input frequency is normally measured by
VMF itself during startup.

15.7.1 Setting a dedicated frequency

Under rare circumstances, when a very exact timer interrupt period is required, it might be required to
manually configure the Local APIC input frequency on a PC.

The currently used processor input frequency can be displayed calling:
“RtosUpload.exe /idshow 11,0,1”

The frequency can be set for each processor using a config file entry:
[Processors]

“LocalApicTimerlnputFrequency0’=hex:...
“LocalApicTimerlnputFrequency1’=hex:...

The values are 64 Bit values and have to be provided in “Little Endian” format.
e.g.: hex:00,CA,9A,3B,00,00,00,00 for 1 GHz

e.g.: hex:B4,BE,F9,0B,00,00,00,00 for 200916660 Hz

15.7.2 Frequency measure error

While VMF determines the Local APIC frequency it checks the quality of this measurement.
If measure time exceeds a limit the error code 0x270B =
RTE_ERROR_TIMER_MEASUREFREQUENCY_DELAYLIMIT will be returned.

This error indicates that the measured frequency will probably not be very accurate and reliable.
This might be acceptable in case no Realtime is required.
The limit can be configured using config-file entry

[Vmf]
"TimerMeasureDelayLimit'=dword:X

See chapter “5.5 Section [Vmf]” for details.

10.10.2024 Page 189/205

15.8 Interrupt / Timer Latency

Please check chapter “14 Appendix A — Platforms and performance” for possible reasons and
solutions.

15.9 RtosLib Event / MsgQueue / Pipe / Socket Performance

On default the events are configured using polling mode. In case the performance is not sufficient the
system can be configured for using interrupt mode.
See chapter “5.8.2 Enable / Disable Comm Interrupt” for details.

15.10 Using RTOSVM inside a Hypervisor

It is not officially supported to run an RTOSVM inside a Hypervisor because realtime behavior is
undetermined.

Nevertheless it might be usefull during development.

Because such a system runs very slow Local APIC timer frequency measure will fail - see chapter
“15.7.2 Frequency measure error” for details.

15.11 Reasons for required Reboots

After product installation or updates or Windows updates it may be desired to minimize the number of
required reboots. This list contains typical and untypical reasons requiring a reboot.

Reason Setting
Memory reservation has changed (size, | RtosUpload:
limit, alignment, type) RtosUpload.exe /nosleep /nowait /memcfg "/a" /config "CfgFile"
Windows is already using LocalAPIC BCD-store:
(Sharing 1%t core only) Bcdedit.exe /set "{current}" useplatformtick yes
Exclusive-Core configuration BCD-store:
Bcdedit.exe /set "{current}" numproc $ReplaceWithNumOfProcs$
Bootcode reservation failed (using Config:
ExclusiveCore only) [Upload] "BootCodeReservationForce"=dword:1
BCD Memory reservation failed BCD-store:
because functionality was disabled Bcdedit.exe /deletevalue "{current}" badmemoryaccess
OR
Bcdedit.exe /set "{current}" badmemoryaccess no
Windows is running in X2APIC mode BCD-store:
Bcdedit.exe /set "{current}" x2apicpolicy disable
Windows Hypervisor is enabled BCD-store:
Bcdedit.exe /set "{current}" hypervisorlaunchtype off
Windows Kernel DMA protection is Turn off at Windows Security:
enabled - Device Security >Core isolation details >Memory integrity
Windows Device based security is Registry:
enabled Set values to ‘0’ at
HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\DeviceGuard
OR
Policy Editor:
Disable “Turn On Virtualization Based Security”
Hiberboot is enabled Registry:
Set ‘HiberbootEnabled' to ‘0’ at
HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\Session
Manager\Power

10.10.2024 Page 190/205

16 Appendix C - Installation

16.1 OEM Installation

To simplify the installation of the required RtE runtime components a Microsoft installer packet (.msi)
is available starting with version 7.0:
- “RteRuntime_x86.msi” for x86 installations
“RteRuntime_x64.msi” for x64 installations

An OEM installation requires the following components to be installed:
- “CodeMeterRuntime32.msi” or “CodeMeterRuntime64.msi” (requirement depends on license)
- “vcredist_x86.msi” or “vcredist_x64.msi”
- “RteRuntime_x86.msi” or “RteRuntime_x64.msi”
- An RTOS image to be started and the corresponding .config files

Command line parameters and options for installing .msi files can be found at multiple online
ressources. Some of them will be presented down at RtE Runtime descpription.

16.1.1 CodeMeter User Runtime

The CodeMeter User Runtime .msi files are included in our SDK at “.. \SDK\OemSetup”. The latest
versions can be downloaded from “http://codemeter.com”.
Further information regarding these modules should be taken from CodeMeter documentation.

16.1.2 RtE Runtime

The RtE Runtime .msi file contains several features and some properties, which can be used to
individualize the installation.
Additional information about MSI installing and configuration options can be found in the internet.

16.1.2.1 MSI Feature list

- Feature.RtosDrv (includes RtosLib)

- Feature.RtosVnet

- Feature.RtosPnp

- Feature.RtosService

- Feature.RtosControl

- Feature.RtosUpload

- Feature.RtosLibDotNet

- Feature.RteRegistry (some registry settings)

16.1.2.2 MSI Properties

- VNETIP (default value "192.168.0.1")
- VNETMASK (default value "255.255.255.0")

16.1.2.3 Installation by Setup.exe
Please check your setups documentation how to install additional .msi packets.

10.10.2024 Page 191/205

16.1.2.4 Installation by script
The examples refer to RteRuntime_x64.msi, but for RteRuntime_x86.msi it is equal.

Install:
msiexec.exe /i "RteRuntime_x64.msi"

Uninstall:
msiexec.exe /X "RteRuntime_x64.msi"

Install with LogFile (also usable on uninstall):
msiexec.exe /i "RteRuntime_x64.msi" /I*v "% USERPROFILE%\RteRuntimelnstall.log"

Silent install with LogFile (also usable on uninstall):
msiexec.exe /i "RteRuntime_x64.msi" /gn /I*v "%USERPROFILE%\RteRuntimelnstall.log"

Silent install using non-default IP with LogFile:
msiexec.exe /i "RteRuntime_x64.msi" VNETIP="192.168.10.1" /gn /I*v
"%USERPROFILE%\RteRuntimelnstall.log"

Silent install using non-default IP without installing RtosUpload with LogFile:
msiexec.exe /i "RteRuntime_x64.msi" VNETIP="192.168.10.1" ADDLOCAL=ALL
REMOVE=Feature.RtosUpload /gn /I*v "% USERPROFILE%\RteRuntimelnstall.log"

Because the msiexec.exe call will return immediately and not wait until install/uninstall finished, an
alternative is using PowerShell. Special attention is required creating the correct parameter list.
PowerShell Silent install using non-default IP without installing RtosUpload with LogFile:
PowerShell; Start-Process -Wait -FilePath msiexec -ArgumentList /i, "RteRuntime_x64.msi",
VNETIP="192.168.10.1", ADDLOCAL=ALL, REMOVE=Feature.RtosUpload, /gn, /I*v,
"%USERPROFILE%\RteRuntimelnstall.log"

10.10.2024 Page 192/205

16.2 Manual Installation

There are several elements required or optional to be installed.
The automatic equivalent of Setup.exe the component “Runtime Files” installs all of them.

- “Realtime OS Driver”
Required driver for loading and accessing VMF and OS

- “Realtime OS Uploader”
Required application to communicate with “Realtime OS Driver”

- “Virtual Machine Framework”
Required file containing the code shared between all OS.

- “Configuration Files”
Configuration files ae required to control the behaviour of the Uploader and VMF.

- “Realtime OS Service”
Optional Service for handling RtosLib functionality.
It is required if at least of this features should be usable by Windows:
SharedMemory, Events, TimeSync, TimeZoneSync
If not installed the config file entry "WaitForRtosCommSubsystems" must be set to “0”

- “Realtime OS Control”
Optional task bar application for showing message boxes in case of errors.
If not installed the config file entry “LaunchRtosControl” must be set to “0”

- “Realtime OS Virtual Network Driver”
Optional network driver for accessing virtual network

- “Debug Console”
Optional application to show information, debug messages and — depending on the product —
gain access to a console for accessing an OS.

The following steps are described for Windows 7 but the procedure is similar for previous versions.

10.10.2024 Page 193/205

16.2.1 Realtime OS Driver

The driver has to be installed using the “Add Hardware Wizard”.
On Windows 7 it can be accessed through the “Device Manager”.

File [Action | View Help
== Sean for hardware changes
e Add legacy hardware
a Help mputer
k drives
» [@ Event Viewer &, Display adapters

DVD/CD-ROM drives
Human Interface Devices

IDE ATA/ATAPI controllers
Keyboards

Mice and other pointing devices

b
> & Shared Folders b
» @ Local Users and Groups, b
» () Performance b

) Device Manager b
4 22 Storage b
(=% Disk Management b
» Fly Services and Applications b

Monitors

Network adapters
» Y5 Ports (COM & LPT)
I3 Processors

ystem devices

il [&) il

b
b
b Universal Serial Bus controllers

Actions

Device Manager
More Actions

Add Hardware

Welcome to the Add Hardware Wizard

This wizard helps you install driver software ta support older
devices that do not support Plug-and-Play and which are not I
automatically recognized by Windows.

You should only use this wizard if you are an advanced user or
you have been directed here by technical suppert.

2% If your hardware came with an installation CD, it is

recommended that you click Cancel to close this wizard
and use the manufacturer’s CD to install this hardware.

To continue, click Next.

What do you want the wizard to do?

know exactly which hardware medel you want to install, you can select it from a list.

(7 Search for and install the hardware automatically (Recommended)

<« 3] » < Back
Add a legacy (non Plug and Play) device to the computer. |
- — L
. “ f »

First start the “Add Hardware Wizard”.
r r 3

Add Hardware _ Add Hardware _

The wizard can help you install other hardware From the list below. select the type of hardware you are installing
The wizard can search for other hardware and automatically install it for you. Or, if you o If you do not see the hardware categery you want, click Show All Devices. i

@) iInstall the hardware that I manually select from a list (Advanced)

i [[F Infrared devices

Common hardware types:

=
&, Display adapters |
L IDE ATA/ATAPI controllers L
@IEEEIZ&M compatible printer
A= TEEE 12844 devices
@ IEEE 1394 Bus host controllers
Zailmaging devices

m

gMadla Center Extender

[<Back][Net> | [Cancd |

< Back Cancel

e]

Select manual selection of the hardware to be add

Add Hardware

Select the device driver you want to install for this hardware.

®

(Retrieving a list of all devices)

Select the manufacturer and model of your hardware device and then click Next. if you have a
disk that contains the driver you want te install, click Have Disk.

!

ol F
Install From Disk

A s e

Insert the manufacturer’s installation diskc, and then
malce sure that the comect drive is selected below.

Copy manufacturer’s files from:

Add é new device driver from...

10.10.2024

Page

194/205

_ Locate File [£5] | | < LocateFile (=3
Lookin: || DriversWin? l:] (< I il o Lookirc | Drivers win? e FrrE
. L o . L
=] BE Deskiop Date modified Type & Mame Date modified Type
o, g Network 10/12/2012 133 PM Setup] 4 RTOS Parallelinf 10/12/2012 1:34 PM Setup]
RecentPlaces = | praries 1WA2/2012 LI PM Setup) RecentPlaces . p105 pRO100.INF 10/12/2012 134 PM Setup]
! 4] Documerts 10/12/2012 134 PM Setup] ! & RTOS_PRO100_MOIMT.inf 10/12/2012 134 PM Setup]
a "ED il 107122012 134 PM - Setup] _ 4 RTOS_PRO1000.inf 10/12/2012 134 PM Setup]
ownloads E
Desktop . rfwin 107122012 134 PM Setup Desktop & RTOS_PROL000_NOINT inf 10/12/2012 L34 PM Setup]
— Ein 10/12/2012 134 PM Setup] — 4 RTOS_RTLELexinf 10/12/2012 1:34 PM Setup]
= Windows 10/12/2012 134 PM Setup] = 4 RTOS_RTLEDbo MOINT.inf 10/12/2012 134 PM Setup]
Libraries . HEE . 10/12/2012 1:34 PM - Setup] Libraries £ RTOS RTLE134.inf 10/12/2012 1234 PM Setup] =
B""B'S-XWD . 10/12/2012 1:34 PM Setup] & RTOS RTLE139_MOINT.inf 10/12/2012 1:34 P Setup]
. .~'-’ ;54"\“3'S " 10/12/2012 1:34 P Setup .!J & RTOS_Serial.inf 10/12/2012 L34 PM Setup]
Camputer 8 Camputer 10/12/2012 134 PM Setup] Computer & RTOS Template.inf 10/12/2012 1:34 PM Setup]
= Flappy Disk Driv (4] 107122012 134 P Setup] = <+ RtosDinwinf 10/12/2012 204 PM Setup]
2y Swstern (C:) 10/12¢2012 1:34PM Setun] ™ i‘ 2
Images (0 r] i, »
Network j Syslgem E:\e]served E] Network
& DVD Diive [F)NGH14.0-5RD A File name: RtasDrv.int -
Files of type: Setup Infarmation [*inf] Cancel Files of type: Setup Information [*.inf) Cancel

... the appropriate directory. Use

- “x86\Drivers.Win7” for Windows 7, 32 Bit

- “x64\Drivers” for Windows 7, 64 Bit
The supported Windows versions are depending on your RTE version. Support for 64 Bit for example
is starting with RTE 5.0

Add Hardhware

Select the device driver you want to install for this hardware.

Select the manufacturer and model of your hardware device and then click Next, If you have a
disk that contains the driver youwant to install, click Have Disk.

il

hodel i

5l Realtirne 05 Virtual Metwork &dapter
RIRTOS 3C0OM compatible PCI card
ERIRTOS Device Name

IrTacRiraane

TR Y A}

_DJ This driver has an Authenticode(tm) signature,

Tell rne wiby driver signing is important

< Back J[Mext > l I Cancel I
3
Add Hardware ——
The wizard is ready to install your hardware
Hardware to install: i
Realtime OS5 Driver
'[57] Windows Security @
To start installing your new hardware, click Next.
Would you like to install this device software?
Name: Realtime OS Driver
L Publisher: acontis technologies GmbH
Always trust software from "acontis technologies Dop't Install
GmbH".
'@ You should only install driver software from publishers you trust. How can [decide which
[<Baok Rt [concd | device software is safe to install?

bepending on your Windows version-and driver sighing policies you may see different dialogs.

10.10.2024 Page 195/205

IS IS
Add Hardware — Add Hardware —

Please wait while the wizard installs the software. ..

Completing the Add Hardware Wizard

The following hardware was installed:

Installi ftware to rt
nstalling software to suppoi HL. Realtime OS Driver Il
==

E»L Realtime OS Driver

Windows has finished installing the software for this device.

= -

To close this wizard, click Finish,

File Action View Help
|

& Computer Management (Local
4 f} System Tools
> (D) Task Scheduler
o (@] Event Viewer
> 5l Shared Folders
» & Local Users and Groups
> (8 Performance

Y T
78 Intel(R) X38/X48 Expres Chipse » | Actions
Intel(R) X38/X48 Express Chipse
Microsoft ACPL Compliant Syst
Microsoft System Management

Device Manager -
More Actions »

Microscft Virtual Drive Enumer:
Numeric data processer

PClbus

Plug and Play Software Device |
Programmable interrupt contro
Realtime OS Driver

Remote Desktop Device Redireq
System CMOS/real time clock
System speaker

System timer

UMEBus Enumerator

% Device Manager
4 25 Storage
(=¥ Disk Management

> By Services and Applications

n

UMBus Root Bus Enumerator

» - § Universal Serial Bus controllers ~
< I R e I] v

After successful instaIEtion-you should be able to see “Realtime OS Driver” in the list of “System
Devices” in the Windows Device Manager.

16.2.2 Realtime OS Virtual Network Driver

The “Realtime OS Virtual Network Driver” installation is similar to the previous “Realtime OS Driver”
installation.

_ Locate File \EI
Laok in: | [} DiiversWin? [esrrm
U . pL
ED B Desitop Date modified Type

the i Network 10/12/2012 133 PM Setup)
RecentPlaces) | brarips 10/12/2013 L34 M Setup
!] Documents 10/12/2012 L34PM Setup]

a "BD o 10/12/2012 134 PM Setup] _

@ onnloads K =
Desktop i 10/12/2012 134 PN Setup]
— Bin 10/12/2012 L34PM Setup]
Windows 10/12/2012 134 PM Setup]
Libraties . 3B 10/12/2012 134 PM Setup)

Drivers.<p R “m
N R 10/12/2012 L34PM Setup]
I W4 10/12/2012 L34PM Setup]
Computer 8 Compuler 10/12/2012 L34PM Setup]
-~ 4 Floppy Disk. Drive (&) 10/12/2012 134 PM Setup]
e!!" ol System (C2] 10/12/2012 L34 PM Setup]

— Images D) | 3
Network u System Reserved [E:]
¢ DD Diive F:) NGH14.0-5RD M
Files of type: Setup Infarmation [inf)

The main difference is that you have to select the “Realtime OS Virtual Network Driver”. All other steps
are equal.

10.10.2024 Page 196/205

Eile Action

L AN 8| % 5
:E" Computer Management (Local | 4 4= TP52 Actions
a4 'ﬁ’g System Tools 1> -/ Computer Device Ma .
i (5 Task Scheduler 1 Disk drives 2
Meore Actions

1+ {2 Event Viewer
I+ @] Shared Folders
1 & Local Users and Groups
i (%) Performance
=) Device Manager
4 {3 Storage
| - =7 Disk Management
Services and Applications

& Display adapters

44 DVD/CD-ROM drives

% Human Interface Devices

g IDE ATAZATAPI contrellers
- Keyboards

ﬂ Mice and other peinting devices
A/ Monitors

¥ Network adapters
2 Intel(R) 82566DM-2 Gigabit Network Connection
¥ Intel(R) PRO/100 S Desktop Adapter

ATV T WY W T W

L.[&¥ Realtime OS Virtual Network Adapter |

YZ' Ports (COM & LPT)

3 Processors

48 System devices

-§ Universal Serial Bus controllers

v v v

+ Control Panel » Network and Internet » Metwork Connections »

- | +3 | | Search -'\/'E.‘Wﬂ(‘oms:t:’ons

File Edit View Tools Advanced Help

,H Local Area Connection 2

Organize = Disable this network device Diagnose this connection
-

Mame Status

@ Local Area Connection MNetwork 2

Metwork cable unplugged

Rename this connection »

- 0 @

Device Name Connectivity

Intel(R) 82566DM-2 Gigabit Net... Internet access

Intel(R) PRO/100 5 Desktop Ada...

| @ Local Area Connection 3

Unidentified network

Realtime 05 Virtual Network Ad... Mo network access

) Disable
Status

Diagnose
@ Bridge Connections

Create Shortcut
Delete

f@ Rename
o]

Properties

-

ol

Networking | Sharing

Connect using:

LF Realtime 05 Vitual Network Adapter

Configure

This connection uses the following tems:

% Client for Microsoft Networks

4Bl 305 Packet Scheduler

.Q File and Printer Sharing for Microsoft Networks

& [ntemet Protocol Version & (TCP/IPvE)

St Protocol Version 4 (TCP/IPv4) |

& Link-Layer Topology Discovery Mapper /0 Driver
& Link-Layer Topology Discovery Responder

Description

Transmission Control Protocol/Intemet Protocol. The default
wide area network protocol that provides communication
across diverse interconnected networks.

Uningtall

o6) (G]

-
Internet Protocel Version 4 (TCP/IPv4) Properties

General

You can get IP settings assigned automatically if your network supports
this capability, Otherwise, you need to ask your network administrator
for the appropriate IP settings.

Obtain an IP address automatically
Use the following IF address:

| IP address: 192 . 168 . 157 . 1
! Subnet mask: 255,255,255, 0
Default gateway:

Obtain DNS server address automatically

Use the following DS server addresses:
Preferred DNS server:

Alternate DNS server:

[validate settings upon exit

10.10.2024

Finally the IP address has to be configured.

Page 197/205

16.2.3 Product Files

=N o =)
F— 1
@-u-vl C\Program Files\acantis_technalogies\Wmfin| - | 4 || earch VimfWin ol
File Edit ‘iew Tools Help
Organize ~ Include in library - Share with « Mew folder 4= - | ﬂ
k=| Pictures q Marme Date modified Type
B videos . .
Bin 11732012 5:3T PR File folder
§ Doc 117372012 5:37 PRA File folder
M Computer .
. DK 11/3/2012 537 PR File folder
Ty System (C E .
. | Licensefgreement.bd 1041272012 12026 ... Text Document
. $Recycle.Bin L ; i
2k | Wersion.ini 10/12/2012 2:02 PM Configuration sett..,
Boot
a. Docurnents am
Perflogs
Pragram Files
acontis_techr
Wimnfiidin
BurnlnTest
Codebeter - i r
5 iterms

Create a new folder where the product should be installed to and copy all files from your installation
directory into that folder.(without “Setup.exe”, “Producticon.ico” and “autorun.inf”)
The number of files will depend on your product.

16.2.3.1 Virtual Machine Framework

The VMF file “vmf.bin” requires no special installation.

16.2.3.2 Realtime OS Service

Programs (1)

m -
Open

A Run as administrator

Start a command shell with administrator rights.

EH Sdministraton ChWindows\System32hemd,exe EI@

Microsoft Windows [Uersion 6.1.76811
Copyright (c?> 2889 Microsoft Corporation. All rights reserved.

C:sWindowsssystem32>ed G:nProgram Filessacontis_technologiessUnfWin“Bin“Windows*,
B6

%é;{rogram Files“acontis_technologies“Unflin“Bin“Windows*x86 >RtosBervice.exe INS

C:wProgram Files~acontis_technologiessUnfWin~Bin“Windows“xB6>RtosService.exe 5TA
RT

C:“Program Files“acontiz_technologiessUnfWin“Bin“Windows x86>_

Change to de directory “C:\Program Files\acontis_technologies\RteRuntime” and then type in
“RtosService.exe INSTALL” followed by “RtosService.exe START”

The service can be removed using the commands “STOP” and “UNINSTALL”.

10.10.2024 Page 198/205

A Computer Management

File Action View Help

» (89 Performance
g Device Manager

e | 7EBEc= HE »unwn

Realtime 05 Service

Local Syste...

4 {2 Storage E::;:;ﬂ;”n‘y: ystem synchronization Remote Access A, Creates a co... Manual Local Syste...
=9 Disk Management issues hetween RTOS and Windows Remote Access C... Manages di... Manual Local Syste...
4 Z Services and Applications Remote Desktop ... Remote Des... Started Manual Local Syste...
Services Remote Desktop 5. Allows user.., Started Manual Metwork 5.
£fﬁ WMI Control Remote Desktop 5. Allowsther.. Started Manual Local Syste...
Remote Procedur... TheRPCSS5.. Started Automatic Network 5...
Remnote Procedur... In Windows... Manual Network 5...
Remote Registry Enables rem... Manual Local Service
Routina and Rem... Offers routi... Disabled Local Svste...
1 LLJ * \ Extended /(Standard/

A Computer Management (Local Trmiems Actions
a ‘Cful System Tools Services
> @ Task Scheduler Realtime 0S Service MName Description Status Startup Type Log On As M
. El Event Viewer . Program Compati... This service... Started Automatic Local Syste... o
sl EhE'TtFD‘dersd a %Et::hsem:e. Protected Storage Provides pr.. Manual Local Syste... Realtime ..
» & Local Users and Groups | Restart the service Quality Windows ... Quality Win... Manual Local Service More ...

After the installation the Windows Servics should show the new “Real?ime OS Service”.

16.2.3.3 Realtime OS Control

RtosControl.exe requires no special installation.

16.2.3.4 Configuration Files

If SharedCore is not required or technically not possible ExclusiveCore can be used.
This example shows how to dedicate RTOS on an exclusive core on a dual core PC.

C:“Users>becdedit ~set numproc 1
The operation completed successfully.

C:xlsers>

(remove: “bcdedit /deletevalue numproc”)
A reboot is required to activate the new setting.
In this example Windows is limited to one processor so the second is available.

The config file “general.config” should contain the section “[Rtos]” with the value "ProcessorMask".
“ProcessorMask” must be set to the value 2 to use the second processor.

10.10.2024

Page 199/205

BN Administrator: syste = :-E

indows must be limited in its processor usage. ‘
- Win7: call “bcdedit /set numproc X” from the command shell — started with administrator rights.

16.2.3.5 Realtime OS Uploader

r ~
System Properties [-J_E-J Systern Properties 22
Compter Name | Hardware | Advanced | System Protection | Remote Computer Mame | Hardware | Advanced | System Protection | Fiemate
You must be logged on as an Administrator to make most of these changes. ezt asielsles X
Performance
Visual effects, processor scheduling, memory usage, and virtual memory Edit System Variahle @
Seftings... Yatiable name: RTE_ROOT
\User Profiles Variable value: srogram Filesiacontis_technologiesiwmPin|
Desktop settings related to your logon
oK | | Cancel |
Seftings...
System variables

Startup and Recovery

. o X Variable Yalue o
System startup, system failure, and debugging information

RTE_ROOT C:\Program Files\acontis_technologies\,...
T TEMP Ciwindows! TEMP
| =eings... | MR Co\Windows| TEMP
USERMAME SYSTEM il
| mew.. || Edt.. || pDelte |
| QK | | Cancel | Apply || | Ok | | Cancel |

:I'he environment variable “RTE_ROOT” has to Be set in the Windows system properties.
“Realtime OS Uploader” requires the variable “RTE_ROOT” to have the value of the product
installation directory — for example “C:\Program Files\acontis_technologies\VmfWin”.

—
BN Administrator: CAWindows)

C:\Progr?m F swacontis_technologies“AT-UmfWin>*RtoslUpload.exe —config "0s.confi]
"' —memcfg

Realtime 0% Uploader 7.16.85.68

lacontis technologies GmbH

[Copuright {c> 28089?-2811

ICurrently is no memory reserved.

MNew memory reservation with base 64Mb and size 32768BKb successfully done.
Result:@

Uploader return code: BxBABEABAR

IC:~Program Files“acontis_technologies AT-UmfWin>

Memory has to be reserved from Windows for loading a RTOS.

The screenshot shows how memory reservation can be updated (values are taken from the given
config file) without loading an OS image.

Depending on the product the name of the config file may vary.

Additionally the memory reservation is checked each time VMF is started and reconfigured
automatically if the settings in the config file had changed.

A reboot is required after the memory configuration has been updated.

10.10.2024 Page 200/205

16.2.4 Debug Console

The debug console has only to be copied. There is no other installation required.

B Administrator ChWindows! Systern32hcmd.exe

Microsoft Windows [Uersion 6.1.76811
Copyright <(c> 2889 Microsoft Corporation. All rights reserved.

C:sWindowsssystem32>cd C:“Program Files“acontis_technologies UnfWin“Bin“Windows™
x86~Telnet

C:\lf'rogram Filessacontis_technologies \UnfWin“Bin“Windows x86~Telnet>PulT¥tel.exe
—vio_

To start the debug console the parameter “-vio” is required.

16.2.5 Os Image

) -
@vvl Ci\Program Filesh\acontis_technalogies\WmPiimBin\MiniRtos] + | +3 [search Minirtes P

File Edit View Toaols Help
Organize = Includein library + Share with « MNew folder == - il (’)

=

Mame Date modified Type Size

1M Computer i . .
o riniRTOS.bin 10/12/2012 1:44 PR BIM File 26
ke Systern (C:) -
4. $Recycle.Bin
Boot =
a. Documents any
Perflogs
Prograrn Files
acontis_techr
Wrnfilin
Bin
MiniRtc
Window

Copy the OS image to the desired directory.
The name and directory of the OS image file are product depending. This example shows VfmWin so
please adapt this step to the product you're using.

16.2.6 CodeMeter Runtime Environment

If your version is bound to a Software or USB license the WIBU “CodeMeter Runtime for Windows”
has to be installed to verify the license.

If no license was found — because there is no license or then “CodeMeter Runtime for Windows” is
missing — a “license not found” error message will occur during start of an OS.

The latest version of “CodeMeter Runtime for Windows” can be downloaded from
http://www.wibu.com (Support & Downloads - User - User Software).

10.10.2024 Page 201/205

http://www.wibu.com/

16.2.7 First Start of an OS

el al
BN Administrator: C:\Windows\sglemiﬂ\pwiem - RtosUpload.exe -config "Os.config” "MiniRtos\Mi... |E|E|i:—hj

NProgram Files“acontis_technologiessUnmfWin~BinsMindows\x862>"C:Program Filesz\al
ontis_technologiessUmfWin“Bin“Windows x86~RtosUpload.exe" —config "' ..~config™0|
.config' —-uvmf . _sumf_ bin'" ..~ ANMiniRtos \x86~MiniRtos .bhin"
[Realtime 05 Uploader 7.17.680.88

contis technologies GmbH

opyright <c)> 20809-2812

Umflin US5.8.88 (5.8.8.1>
5.8

m

Product =
RtosWin version:

Hosting 0S: Windous 7

IUpluadRTOS.dll version: 7.18.8.8
RtosDrv — Realtime 05 Driver

Driver version
ll Inf file version

Installer version

Required UMF version

RtosUnet — Realtime 08 Uirtuwal Network Adapter
Driver version
Inf file version
Installer version
Required UMF version

RteDevice — Realtime 08 Driver
Driver version

Inf file version
Installer version
Required UMF version

RteDevice — Realtime 05 Uirtual Network Adapter

Driver version

Inf file version
Installer version
Required UMF version

RtosService version:

RtosControl version:

ignored
ignored
ignored
1.27.5.8

ignored
ignored
ignored
1.28.8.8

3.5.1.8
7.6.2.1

1.27.5.8
1.27.2.8

Uirtual machine framework version:
Uirtual machine framework version required by Uploader:

Loading UMF.._Error: Rehoot is required to update Memory—Configuration
Uploader return code: BxBBHE1082

fiPress any key to continue..._

To start an OS the config file and OS image must be passed as parameters to the Uploder.
In this case the complete parameter is:

"C:\Program Files\acontis_technologies\RteRuntime\RtosUpload.exe" -config
" . \WmfWin\Cfg\Os.config' -vmf "\vmf.bin™ ".\VmfWin\Bin\MiniRtos\x86\MiniRtos.bin"

After first time installation the Memory-Configuration might require a second reboot.
The name of the config file and OS image file are product depending. This example uses VfImWin so
please adapt this step to the product you're using.

10.10.2024 Page 202/205

BER Administrator CRWWindowst Bystern 32 cmd exe o || B[E3

C:~Program Files“acontis_technologies“UnfWin~Bin“Windows x86>"C:~Program Files“a|
contiz_technologiessUnfWin*Bin*Windows~x86~Rtoslpload.exe" —config """ ._“config™ 0
s.config’ —vmf *..semf.bin’" "..~..“HiniRtossx86~MiniRtos.bin"

Realtime 08 Uploader 7.17.08_80

lacontis technologies GmbH

Copyright (c)> 2809-2812

Product : RT0S32Win VU5.1.88 <5.1.8.99>

Basze : U5.1.8.99

RtosWin version: 5.1

Hosting 08: Windows 7 Service Pack 1.8 (32 hit)>

UploadRTO0S.d11l version:

RtosDrv — Realtime 05 Driver
Driver version
Inf file version
Installer version
Required UMF version

RtosUnet — Realtime 05 Uirtuwal HNetwork Adapter
Driver version
Inf file version
Installer version
Required UMF version

RteDevice — RT0S PRO-18B8 compatible PCI card
Driver version
Inf file version
Installer version
Required UMF version

RteDevice — Realtime 08 Driver
Driver version ignored
Inf file version ignored
Installer version ignored
Required UMF version 1.28.8.8

RteDevice — Realtime 08 Uirtual Metwork Adapter
Driver version ignored
Inf file version ignored
Installer version ignored
Required UMF version 1.28.8.8
RtosService version: 3.6.0.8
RtosControl version: ?.7.1.8
Virtual machine framework version: 1.28.2.8
Uirtual machine framework version required by Uploader: 1.28.8.8

Reservation active : base 64Mb and size 32768Kh.

Loading UMF...0k
Uirtual machine framework version required by 085: 1.28_x.x

Start 08 — Id:@... Ok
Uploader return code: BxBOBBBEEA

IC:“Program Files“acontis_technologies“UnfWin~Bin“Windows x86>

Finaly it should start successfully.

B Administrator: CWindows'Systern32hemd.exe
Microsoft Windows [Uersion 6.1.76811
Copyright <(c> 2889 Microsoft Corporation. All rights reserved.

C:sWindowsssystem32>cd C:“Program Files“acontis_technologies UnfWin“Bin“Windows™
x86~Telnet

C:\lf'rogram Filessacontis_technologies \UnfWin“Bin“Windows x86~Telnet>PulT¥tel.exe
—vio_

To start the debug console the parameter “-vio” is required.

10.10.2024 Page 203/205

The debug console output depends on the product. In some products deug console implements an
entire shell to access the OS.

16.2.8 Product specific additionals steps

If a product requires additional installation steps they will be described in the “Manual Installation”
section of the product specific manual.

10.10.2024 Page 204/205

17 Version History

A general version history containing information about new features, migration hints and
improvements can be found in the release notes file “ReleaseHistory.txt”.

10.10.2024 Page 205/205

