
1 of 182

acontis technologies GmbH

SOFTWARE

RTOS Virtual Machine
Virtual Machine Framework for Windows

Product Manual
Edition: 2024-11-11

11.11.2024 Page 2/182

1 ACONTIS RTOS VIRTUAL MACHINE OVERVIEW .. 7

1.1 SHARED MODE OPERATION ... 7
1.2 EXCLUSIVE MODE OPERATION .. 8
1.3 REAL-TIME DEVICE MANAGEMENT ... 9
1.4 VIRTUAL MACHINE FRAMEWORK ... 10

1.4.1 VMF Architecture .. 11
1.4.2 Basic VMF Services (Hardware Abstraction Layer) ... 12

1.5 PORTABILITY ... 13
1.6 MEMORY LAYOUT ... 14
1.7 GENERAL ... 15
1.8 VMF MANAGEMENT ANCHOR .. 15

2 VMFWIN SDKS AND EXAMPLE IMPLEMENTATIONS ... 16
2.1 RTOS SDK ... 16

2.1.1 Mini RTOS example implementation ... 16
2.1.2 Virtual network packet library example implementation .. 16

2.2 THE RTOS LIBRARY ... 17
2.2.1 Windows .. 17
2.2.2 RTOS ... 17
2.2.3 VMF Interface serialization .. 17

2.3 WINDOWS SDK ... 17
2.4 CONTENT, DIRECTORIES .. 18

2.4.1 RTOSWin runtime setup .. 18
2.4.2 VmfWin .. 18
2.4.3 SDK ... 18
2.4.4 Examples ... 19

2.5 OEM FILES .. 20
2.5.1 Windows runtime files ... 20
2.5.2 SDK for the RTOS Library .. 20
2.5.3 Windows demo runtime ... 20
2.5.4 Additional OEM files ... 20

2.6 BUILD THE MINI RTOS ... 21
2.7 START THE MINI RTOS ... 21
2.8 DEBUG CONSOLE ... 22

3 RTOS CONFIGURATION .. 23
4 USING THE VMF API FUNCTIONS ... 24
5 BOOTING THE RTOS ... 25

5.1 PRE-BOOT STEPS .. 25
5.2 FRAMEWORK INITIALIZATION, FRAMEWORK MEMORY CONTEXT MAPPING ... 25
5.3 RTOS BOOT ... 28
5.4 SHARED PROCESSOR CORE: RTOS IDLE LOOP .. 28

6 VIRTUAL MACHINE FRAMEWORK INTERFACE ... 29
6.1 VMF FUNCTION CALL SYNCHRONIZATION .. 29
6.2 VMF VERSIONING ... 30

6.2.1 Using OS image information ... 30
6.2.2 Without OS image information .. 31

6.3 VMF ANCHOR DESCRIPTOR ... 32
6.4 KERNEL MEMORY MAPPING DESCRIPTOR ... 33
6.5 UNAVAILABLE, UNSUPPORTED FUNCTIONS .. 34
6.6 CORE INTERFACE ... 35

6.6.1 vmfCorePreinit .. 35
6.6.2 vmfCoreLoad ... 35
6.6.3 vmfCoreUnload ... 35
6.6.4 vmfCoreInit ... 36
6.6.5 vmfCoreHwInit .. 36
6.6.6 vmfCoreGetKernelMapTable .. 37
6.6.7 vmfCoreRelocate ... 37
6.6.8 vmfCoreHandle ... 38

6.7 OS SWITCHING .. 39
6.7.1 vmfTunnelSwitch ... 39

6.8 MULTIPROCESSOR MANAGEMENT ... 40

11.11.2024 Page 3/182

6.8.1 vmfProcessorGetMaskAll .. 40
6.8.2 vmfProcessorGetMaskCurrent .. 40
6.8.3 vmfProcessorGetMaskShared ... 41
6.8.4 vmfProcessorStart ... 41
6.8.5 vmfProcessorStop .. 41
6.8.6 vmfProcessorGetLocalApicId ... 42
6.8.7 vmfProcessorGetCpuId ... 42
6.8.8 vmfProcessorLock ... 42
6.8.9 vmfProcessorUnlock ... 43

6.9 VIRTUAL MACHINE DEVICE MANAGEMENT .. 44
6.9.1 Interrupt IDs .. 45
6.9.2 vmfDeviceIsForRtosA .. 46
6.9.3 vmfDeviceIsForRtosW ... 46
6.9.4 vmfDevicePciIsForRtos ... 46
6.9.5 vmfDeviceIoIsForRtos ... 47
6.9.6 vmfDeviceInterruptIdFromNameA .. 47
6.9.7 vmfDeviceInterruptIdFromNameW ... 48
6.9.8 vmfDeviceResourceDmaGet .. 48
6.9.9 vmfDeviceResourceInterruptGet ... 49
6.9.10 vmfDeviceResourceInterruptSet ... 49
6.9.11 vmfDeviceResourceIoPortGet .. 49
6.9.12 vmfDeviceResourceMemoryGet ... 51
6.9.13 vmfDeviceGetIdByPci ... 51

6.10 INTERRUPTS .. 52
6.10.1 vmfInterruptLock .. 52
6.10.2 vmfInterruptUnlock .. 52
6.10.3 vmfInterruptIsApicUsed.. 52
6.10.4 vmfInterruptVectorToId .. 53
6.10.5 vmfInterruptIdToVector .. 53
6.10.6 vmfInterruptEnable ... 53
6.10.7 vmfInterruptDisable ... 54
6.10.8 vmfInterruptGenerate ... 54
6.10.9 vmfInterruptEoi .. 55
6.10.10 vmfInterruptIsr ... 55
6.10.11 How to generate an IPI .. 56
6.10.12 How to handle interrupts .. 57

6.11 TIMER ... 58
6.11.1 Physical timer initialization.. 58
6.11.2 Virtual timer operation ... 58
6.11.3 Virtual timer output frequency adjustment ... 59
6.11.4 Physical timer frequency .. 59
6.11.5 vmfTimerHwIsr ... 60
6.11.6 vmfTimerHwGetInterruptId .. 60
6.11.7 vmfTimerHwEnable .. 60
6.11.8 vmfTimerHwDisable ... 61
6.11.9 vmfTimerHwGetInputFreq ... 61
6.11.10 vmfTimerHwGetInitialCount .. 61
6.11.11 vmfTimerHwSetInitialCount ... 62
6.11.12 vmfTimerHwModifyInitialCount .. 62
6.11.13 vmfTimerHwGetCurrentCount ... 62
6.11.14 vmfTimerHwGetCurrentPosition .. 63
6.11.15 vmfTimerHwGetOutputFreq ... 63
6.11.16 vmfTimerHwSetOutputFreqMin ... 64
6.11.17 vmfTimerHwGetOutputFreqMin .. 64
6.11.18 vmfTimerHwSetOutputFreqMax .. 64
6.11.19 vmfTimerHwGetOutputFreqMax .. 65
6.11.20 vmfTimerVirtGetInterruptId ... 65
6.11.21 vmfTimerVirtSetOutputFreq ... 65
6.11.22 vmfTimerVirtGetOutputFreq .. 66
6.11.23 vmfTimerVirtGetOutputFreqMin .. 66
6.11.24 vmfTimerVirtGetOutputFreqMax ... 66
6.11.25 vmfTimerVirtSetOutputFreqMin .. 67

11.11.2024 Page 4/182

6.11.26 vmfTimerVirtSetOutputFreqMax .. 67
6.11.27 vmfTimerVirtGetInputFreq ... 67
6.11.28 vmfTimerVirtGetInitialCount ... 68
6.11.29 vmfTimerVirtGetCurrentCount .. 68
6.11.30 vmfTimerGetCpuFrequency ... 68
6.11.31 vmfTimerVirtSetInterruptId .. 69
6.11.32 vmfTimerVirtXxx vmfTimer0Xxx vmfTimer1Xxx .. 69
6.11.33 vmfTimerXGetInterruptId ... 69
6.11.34 vmfTimerXEnable ... 70
6.11.35 vmfTimerXDisable .. 70
6.11.36 vmfTimerXGetInputFreq .. 70
6.11.37 vmfTimerXSetOutputFreq ... 71
6.11.38 vmfTimerXGetOutputFreq .. 71
6.11.39 vmfTimerXSetOutputFreqMin .. 71
6.11.40 vmfTimerXGetOutputFreqMin ... 72
6.11.41 vmfTimerXSetOutputFreqMax .. 72
6.11.42 vmfTimerXGetOutputFreqMax ... 72
6.11.43 vmfTimerXGetInitialCount ... 73
6.11.44 vmfTimerXGetCurrentCount .. 73
6.11.45 vmfTimerXGetGranularity.. 74
6.11.46 vmfTimerXModifyInitialCount .. 74
6.11.47 vmfTimerXIntEnable ... 75
6.11.48 vmfTimerXIntDisable ... 75

6.12 REALTIME CLOCK ... 76
6.12.1 vmfRtcGetTime ... 76
6.12.2 vmfRtcSetTime .. 76
6.12.3 vmfRtcSetAlarm .. 76
6.12.4 vmfRtcSetReference .. 77

6.13 CONFIGURATION ... 78
6.13.1 vmfConfigGetFirstValueA .. 78
6.13.2 vmfConfigGetFirstValueW ... 79
6.13.3 vmfConfigGetNextValueA ... 80
6.13.4 vmfConfigGetNextValueW .. 81
6.13.5 vmfConfigQueryValueA .. 82
6.13.6 vmfConfigQueryValueW ... 83

6.14 VIRTUAL NETWORK: NETWORK PACKET LIBRARY .. 84
6.14.1 Operation modes .. 84
6.14.2 Configuration ... 84
6.14.3 Initialization, De-Initialization ... 85
6.14.4 Heartbeat .. 90
6.14.5 Receive network packets ... 91
6.14.6 Send network packets ... 93

6.15 I/O PORT ACCESS .. 97
6.15.1 vmfInByte .. 97
6.15.2 vmfOutByte ... 97
6.15.3 vmfInWord .. 97
6.15.4 vmfOutWord ... 98
6.15.5 vmfInDword .. 98
6.15.6 vmfOutDword ... 98

6.16 BASIC SHARED MEMORY AREAS (DEPRECATED) .. 99
6.16.1 vmfShmGetUserShmAddr ... 99
6.16.2 vmfShmGetUserShmSize ... 99
6.16.3 vmfShmGetInternalShmAddr .. 99
6.16.4 vmfShmGetInternalShmSize .. 100

6.17 MULTI PURPOSE SHARED MEMORY AREAS .. 101
6.17.1 vmfShmGetInfo ... 102

6.18 SHARED EVENTS ... 103
6.18.1 vmfEventCreateA .. 103
6.18.2 vmfEventCreateW ... 103
6.18.3 vmfEventOpenA .. 104
6.18.4 vmfEventOpenW ... 104
6.18.5 vmfEventSet .. 105

11.11.2024 Page 5/182

6.18.6 vmfEventClose .. 105
6.18.7 vmfEventCommAttach .. 105
6.18.8 vmfEventDelete ... 106
6.18.9 vmfEventListGetLockFlagAddr .. 106
6.18.10 vmfEventGetLockFlagAddr .. 106
6.18.11 vmfEventGetNextJob .. 106
6.18.12 vmfEventJobDone ... 106
6.18.13 vmfEventGetNameA .. 107
6.18.14 vmfEventGetNameW ... 107
6.18.15 vmfEventGetState ... 107
6.18.16 vmfEventReferenceAdd ... 108
6.18.17 vmfEventReferenceRelease ... 108
6.18.18 vmfEventShowA .. 109
6.18.19 vmfEventShowW ... 109

6.19 MESSAGE BOX .. 110
6.19.1 vmfMessageBoxExW ... 110
6.19.2 vmfMessageBoxW ... 110
6.19.3 vmfMessageBoxExA ... 110
6.19.4 vmfMessageBoxA .. 110
6.19.5 vmfMessageBoxGetW ... 111
6.19.6 vmfMessageBoxGetA .. 111
6.19.7 vmfMessageBoxExGetW ... 111
6.19.8 vmfMessageBoxExGetA .. 112
6.19.9 vmfMessageBoxShowA ... 112
6.19.10 vmfMessageBoxShowW .. 112

6.20 CONFIGURATION SHOW ROUTINES ... 113
6.20.1 vmfRtosConfigShowA ... 113
6.20.2 vmfRtosConfigShowW .. 113
6.20.3 vmfProcessorConfigShowA .. 113
6.20.4 vmfProcessorConfigShowW ... 114
6.20.5 vmfIoApicConfigShowA .. 114
6.20.6 vmfIoApicConfigShowW ... 115
6.20.7 vmfDeviceConfigShowA ... 115
6.20.8 vmfDeviceConfigShowW .. 116

6.21 VIRTUAL I/O ... 117
6.21.1 vmfVioRead .. 117
6.21.2 vmfVioWrite .. 118

6.22 TIME STAMPING .. 119
6.22.1 vmfTimeStampGetFrequency .. 119
6.22.2 vmfTimeStampGetValue ... 119
6.22.3 vmfTimeStampGetMaxValue .. 120

6.23 PERFORMANCE MEASUREMENT .. 121
6.23.1 vmf PerformanceStart ... 121
6.23.2 vmfPerformanceReset ... 121
6.23.3 vmfPerformanceStop .. 121
6.23.4 vmfPerformanceGetData .. 122

6.24 TIME SYNCHRONISATION .. 123
6.24.1 vmfTimeSyncIsMaster ... 123
6.24.2 vmfTimeSyncGetMaster .. 123
6.24.3 vmfTimeSyncSetMaster ... 123
6.24.4 vmfTimeSyncDisable .. 124
6.24.5 vmfTimeSyncGetMasterTime .. 124
6.24.6 vmfTimeSyncGetMasterTime2 .. 124
6.24.7 vmfTimeSyncGetOsTime ... 125
6.24.8 vmfTimeSyncGetOsTime2 ... 125
6.24.9 vmfTimeSyncSetTime .. 126
6.24.10 vmfTimeSyncSetTime2 .. 126
6.24.11 vmfTimeSyncShowA .. 126
6.24.12 vmfTimeSyncShowW ... 127
6.24.13 vmfTimeSyncConvertTime .. 128
6.24.14 vmfTimezoneSyncIsMaster ... 128
6.24.15 vmfTimezoneSyncGetMaster .. 128

11.11.2024 Page 6/182

6.24.16 vmfTimezoneSyncSetMaster ... 129
6.24.17 vmfTimezoneSyncDisable ... 129
6.24.18 vmfTimezoneSyncGetOsTimezoneA .. 129
6.24.19 vmfTimezoneSyncGetOsTimezoneW ... 130
6.24.20 vmfTimezoneSyncSetTimezoneA ... 130
6.24.21 vmfTimezoneSyncSetTimezoneW .. 130
6.24.22 vmfTimezoneSyncShowA .. 131
6.24.23 vmfTimezoneSyncShowW.. 131

6.25 COMM TASK ... 132
6.25.1 vmfCommSignalStarted .. 132
6.25.2 vmfCommIsStarted ... 132
6.25.3 vmfCommGetLockFlagAddr ... 132
6.25.4 vmfCommCreateProcess .. 133
6.25.5 vmfCommConfigGet ... 133

6.26 OS MANAGEMENT ... 134
6.26.1 vmfOsStart .. 134
6.26.2 vmfOsStop ... 134
6.26.3 vmfOsSuspend .. 135
6.26.4 vmfOsResume ... 135
6.26.5 vmfOsNotificationModeSet ... 136
6.26.6 vmfOsGetIdCurrent .. 136
6.26.7 vmfOsGetInfoA ... 137
6.26.8 vmfOsGetInfoW .. 137
6.26.9 vmfOsIdle.. 137
6.26.10 vmfOsReboot .. 138
6.26.11 vmfOsShutdown .. 138

6.27 CONFIG REGISTRY .. 139
6.27.1 vmfConfigRegKeyOpenA .. 139
6.27.2 vmfConfigRegKeyOpenW ... 140
6.27.3 vmfConfigRegKeyClose .. 140
6.27.4 vmfConfigRegKeyEnumerateA ... 140
6.27.5 vmfConfigRegKeyEnumerateW .. 141
6.27.6 vmfConfigRegValueQueryA .. 141
6.27.7 vmfConfigRegValueQueryW ... 142
6.27.8 vmfConfigRegValueEnumerateA .. 143
6.27.9 vmfConfigRegValueEnumerateW ... 143

6.28 MISCELLANEOUS .. 145
6.28.1 vmfIdGetByNameA ... 145
6.28.2 vmfIdGetByNameW .. 145
6.28.3 vmfIdGetNameA ... 146
6.28.4 vmfIdGetNameW... 146
6.28.5 vmfIdShowA .. 147
6.28.6 vmfIdShowW ... 147
6.28.7 vmfAsyncJobIsDone ... 148

6.29 PRIVILEGED FUNCTIONS .. 148
6.29.1 Functions requesting IO privilege level ... 149
6.29.2 Functions requesting privileged execution level .. 149

7 VMF INTERFACE SERIALIZATION... 150
8 THE RTOS LIBRARY ... 152

8.1 PORTING THE RTOS LIBRARY ... 152
8.1.1 RTOS Library OS adaptation layer ... 152

8.2 RTOS LIBRARY – APPLICATION LAYER API ... 182
8.3 RTOS LIBRARY EXAMPLE APPLICATIONS .. 182

11.11.2024 Page 7/182

1 ACONTIS RTOS Virtual Machine Overview

The ACONTIS RTOS-VM provides a light-weight real-time virtualization platform for Windows.
On top of this platform one can very easily implement own firmware or run a custom or off-the-shelf
real-time operating system.
As a result, existing real-time software can easily be adopted to run together with Windows.
When using multicore CPUs one can choose between two general operation modes.

1.1 Shared Mode Operation

Windows shall run on all CPU cores and only one CPU core shall additionally run the real-time
software. If the Windows application needs a lot of CPU power (e.g. for image processing) this will be
the appropriate operation mode even on multi-core CPUs. In shared mode operation Windows (on this
core) will usually only get CPU time when the real-time software is idle.

The following diagram illustrates the flow of control:

Windows
Real-time

Tasks

Real-time

ISR





Realtime IRQ

Windows Real-time SoftwarePriority of Execution

IR
Q

Operating states of the RTOS-VM in shared mode
 Exception-handling or a higher priority interrupt becomes outstanding.

 Interrupt Service Routine optionally starts a new task and then finishes.

 From the idle-state, VxWorks transfers control to Windows operating system.

Note: When running the RTOS-VM in shared mode on multiprocessor/multicore systems this state
diagram is only applicable for one CPU core in the system (by default on the first core). All other CPU
cores will run Windows only.

11.11.2024 Page 8/182

1.2 Exclusive Mode Operation

Windows and the real-time software shall run fully independently on different CPU cores. Using this
mode will lead to much shorter interrupt and task latencies as there is no need to switch from Windows
to the real-time software.

The following diagram, illustrates the flow of control on a dual core system:

Core 1:

Windows

Core 2:

Real-time

Software

Real-time

Tasks

Real-time

ISRs



Realtim
e IRQ

Windows

Processes

Windows

ISRs,

DPCs



W
indows IRQ

Operating states of the RTOS-VM in exclusive mode
 Exception-handling or a higher priority interrupt becomes outstanding.

 Interrupt Service Routine optionally starts a new task and then finishes.

Note: When running the RTOS-VM in exclusive mode Windows will never be interrupted. Application
and interrupt processing run concurrently and independently on both CPU cores. There is no need in
the real-time software to enter the idle state.

11.11.2024 Page 9/182

1.3 Real-time Device Management

To achieve real-time behavior the RTOS will have to directly access its hardware devices. In fact,

hardware devices are never emulated, neither in Windows nor in the RTOS. Every specific device, e.g.

a PCI network adapter card will, then either be used by Windows or by the RTOS exclusively.

All hardware devices which shall be used by the RTOS will be managed by the Windows RtosPnp

driver shipped with the ACONTIS RTOS-VM.

Using the ACONTIS Real-Time Device Manager tool the user can select which device shall be used

by the RTOS and which by Windows.

Within the Windows Device Manager all RTOS devices will then appear in the “Realtime OS Devices”

tree:

Within the RTOS there are two methods for detecting whether a device can be accessed or not. For

PCI devices usually the PCI vendor and device ID can be used. For other devices (as well as for PCI

devices) the device name (e.g. RTOS PRO/100 PCI card) can be used.

11.11.2024 Page 10/182

1.4 Virtual Machine Framework

Using the ACONTIS RTOS-VM there is no need to understand the complex hardware of modern PC
systems. The basic hardware components of the PC (architecture specific processor registers, timer,
interrupt controller, memory handling/partitioning) can be accessed in the real-time software by simply
calling the appropriate functions that the RTOS-VM hardware abstraction layer (HAL) provides.
Besides the HAL functions the RTOS-VM provides additional services, especially for communication
with Windows:

• Shared Memory: Direct access to shared memory areas

• Shared Events: Notification using named events

• Data Access Synchronization: Interlocked Data Access

• Date and Time Synchronization

• Virtual Serial Channel

• Network Packet Library: basic Ethernet data transfer service

• RTOS configuration services (e.g. for dynamically setting the IP address of the virtual network)
The application interface between the real-time software and the RTOS-VM is called the Virtual
Machine Framework (VMF).
When calling VMF hardware functions the hardware will be directly accessed and not emulated. These
functions are called the VMF Hardware Abstraction Layer (HAL) functions.

11.11.2024 Page 11/182

1.4.1 VMF Architecture
The following figure shows the general architecture of the VMF when a RTOS is embedded within
Windows. Besides the basic VMF API (the HAL) which usually is required to build a RTOS BSP
(Board Support Package) the VMF contains functions for communication between Windows and the
RTOS (e.g. shared memory, events, network packet library). On top of the network packet library a
virtual network driver can be built which will then provide a virtual network connection between
Windows and the RTOS.

VMF Binary Module

Windows

RTOS driver

Realtime Operating System (RTOS)

RTOS

Image

RTOS

Virtual Network driver

Board Support Package

Basic VMF API (HAL)
RTOS Processor

Dependent Part for x86

TCP/IP Stack

RTOS

Bootloader

Uploader DLL

User Application

Embedded Application

RTOS-Library-

Interface

Virtual Network Driver

Network Packet

Library

S
o

c
k

e
ts

RTOS-Library

(Communication)

BASIC VMF

(Hardware Abstraction

Layer)

O
S

 s
w

it
c

h
in

g

M
P

 t
e

c
h

n
o

lo
g

y

S
h

a
re

d
 M

e
m

o
ry

,
E

v
e

n
ts

11.11.2024 Page 12/182

1.4.2 Basic VMF Services (Hardware Abstraction Layer)

The basic VMF services provide a simple programming interface to access the otherwise complex PC
hardware.
The following figure shows in more detail the basic VMF services which usually are used within a
RTOS Board Support Package.

Processor(s)
Processor(s)

Board Support Package

VMF Binary Module

System

Timer

Auxiliary

Timer

Interrupt

Controller

PIC

APIC/IOAPIC(s)

Timer Hardware

(e.g. 8254)

Interrupt

Manage-

ment

Cores,

Processor(s)

Multi-Core

Management

for SMP and AMP

systems

Enter RTOS:

Boot, Interrupt

Leave RTOS:

(Shared Core only)

Idle, Force Idle

Memory (RAM)

Memory

Management

Partitioning,

Shared Memory

BASIC VMF API (HAL functions)

Devices

PCI/PCIe/Legacy

Device

Management

Timer

Management

When porting system software (e.g. a RTOS Board Support Package) to run with the ACONTIS
RTOS-VM there is no need to directly access PC hardware like timers or interrupt controllers.
The VMF as well provides a generic method for booting the system software (e.g. a RTOS) and for
setting up the RTOS memory context (virtual memory).
When running on multi-core systems the VMF also provides methods for executing a RTOS which
supports Symmetric Multiprocessing (SMP).
Summarized, using the VMF one gets the following advantages:

• Fully virtualized hardware access (via Hardware Abstraction Layer functions). No need to

understand the complex PC hardware.

• Either run the RTOS and Windows together on one single core or use dedicated cores

exclusively for each operating system.

• The same RTOS image can be run either on a shared or a non-shared CPU core.

• Sophisticated Multi Core Support

o Run the RTOS on one single or on multiple cores (SMP)

o A RTOS can run in SMP mode even on dual core CPUs

11.11.2024 Page 13/182

1.5 Portability

When using standard frameworks or libraries the customer usually gets either source-code which in a
first step would have to be ported to his specific environment (operating system, compiler, linker).
In cases where the supplier does not want to ship the source-code the customer would have to wait
until a version for the framework/library is available for his environment.

To avoid these implications the ACONTIS VMF is not shipped as a library or source code but as a
relocatable binary module. This binary module will be loaded by the ACONTIS RTOS-VM at an
arbitrary location in the memory (the VMF code can be executed at any location in memory!).

Every call to a VMF function will then be redirected via well-known locations inside a jump table, this
jump table is stored at a well-defined location inside the binary module.
Thus there is no need to port one single line of C language or assembly language code (and no need
to add the VMF as an additional library to the customer’s environment).
The only requirement is to include one single header file. Within this header file the VMF functions are
simply defined as macros which call the appropriate functions using the function pointer in the jump
table.

VMF Binary Module (relocatable)

VMF fuctions (relocatable: can be executed at an arbitrary location in memory)

Pointer to Function 1

Pointer to Function 2

Pointer to Function n

System Software (RTOS Board Support Package)

Function 1

Function 2

Function 3

Summarized, using the VMF binary module leads to the following advantages:

• No porting necessary, just include a C header file.

• No change necessary in the system software when new VMF versions are released (just

exchange the binary module by the new one).

• The same binary VMF module will be used together with different RTOSes; this ensures a

higher quality than if the VMF code would have been ported individually for any RTOS.

11.11.2024 Page 14/182

1.6 Memory Layout

VMF = Virtual Machine Framework
RTOS Framework = RTOS interface (VMF interface functions)

RTOS memory

RTOS 2
(QNX)

EntryPoint
G_oVmfFmwkAnchor

Windows

Framework, vmf.bin
(VMF binary image)

Virtual network adapter
RtosVnet

RTOS 0
(VxWorks)

EntryPoint
G_oVmfFmwkAnchor

RTOS 1
(Windows CE)

EntryPoint
G_oVmfFmwkAnchor

Uploader/RtosDrv

Multi purpose

Shared memory

(No access by Windows)

1 – The RTOS memory area (orange) will not be used by
Windows

2 – The Uploader (RTOS Bootloader) copies the VMF
binary image (Framework) file vmf.bin into an area
allocated by Windows (blue). The RTOS image is copied
into the RTOS memory (orange).

3 – At a specific location in the RTOS area (the anchor,
G_oVmfFmwkAnchor) some basic VMF information is
located, among other information the uploader will store
the physical base address of the VMF image here.

4 – After loading the RTOS image into memory the
uploader will enter the RTOS boot entrypoint.

5 – The RTOS kernel will then boot. All memory areas
needed by the VMF (Internal / User Shm, virtual network,
LocalAPIC, IoAPICs etc.) will have to be mapped by the
RTOS.

RtosMemoryStartAddress

RtosEntryPointOffset
RteFmwkAnchorOffset

RtosMemoryStartAddress

RtosEntryPointOffset
RteFmwkAnchorOffset

RtosMemoryStartAddress

RtosMemorySize
RtosEntryPointOffset
RteFmwkAnchorOffset

Multi Purpose Shared
Memories

RteMemorySize
RteMemoryStartAddress

RtosMemorySize

RtosMemorySize

[Rtos2]

[Rtos1]

[Rtos]

[Upload]

[SharedMemory\...]
"Size"=dword:…

11.11.2024 Page 15/182

1.7 General

The VMF defines a virtual machine platform to run one or multiple secondary operating systems
(RTOS) on top of a primary operating system (Windows).
The VMF is a binary module which is loaded at a predefined physical address. The interface function
entry points are located at fixed offsets within this binary module.
All functions of the VMF are fully relocatable, thus the VMF may be located at any physical address
and mapped into the RTOS memory context at an arbitrary location without to be recompiled or
relinked.

1.8 VMF management anchor

Some information about the VMF is needed within the RTOS, e.g. the physical base address of the
framework binary image. This data is located at a specific location inside the RTOS memory.
After loading the RTOS image into the memory the uploader will copy the VMF management data at
the appropriate location inside the RTOS memory

11.11.2024 Page 16/182

2 VmfWin SDKs and example implementations
When using the VmfWin Software Development Kit an off-the-shelf RTOS can be adjusted to co-
existently run and communicate with Windows.
The SDKs offers basic services to adjust the Board Support Package of the RTOS (for example the
hardware abstraction layer) as well as higher-level Windows/RTOS communication services.

After installing VmfWin it is possible to load and execute the shipped Mini RTOS example (see chapter
2.7). By default VmfWin is located below C:\Program Files\acontis_technologies\VmfWin.

2.1 RTOS SDK

The RTOS SDK is required to adjust the RTOS. It contains basic functions like the VMF hardware
abstraction layer as well as communication services like the network packet library or shared memory
access functions.
The RTOS SDK is located below the VmfWin\SDK directory. It contains the header files required to
use the Virtual Machine Framework. As the VMF is a binary module which has not to be linked with
the RTOS there is no need for a library file to include.

2.1.1 Mini RTOS example implementation
The Mini RTOS example implementation shows how to use the VMF functions to get a RTOS running.
Typically the Board Support Package of the RTOS has to be adjusted to use VMF hardware
abstraction layer functions instead of directly access the hardware.
Therefore the Mini RTOS example is split into two parts:

a) Board Support Package: Mini BSP
b) RTOS: Mini RTOS

The Mini BSP contains all the low level functions which initialize the hardware (timer, interrupt
controller). The Mini RTOS is merely a placeholder for a real RTOS. It doesn’t provide any real OS
functionality.

2.1.2 Virtual network packet library example implementation
The VxWorks network driver is shipped as an example implementation to demonstrate the usage of
the virtual network packet library. See chapter 6.12 for more information about the vnet library.

11.11.2024 Page 17/182

2.2 The RTOS Library

VMF communication service functions (e.g. for shared events) only provide the basic services without
any synchronization, some of them also have to be called within a well-defined memory context (ring 0
context, kernel context).
The Windows/RTOS communication services are therefore summarized within the RTOS library which
is based on VMF services. This library is split into two parts, an OS independent part and an OS
dependent part.
Synchronization (e.g. interrupt locking or mutexes) are part of the OS dependent part.
A detailed description of the RTOS library can be found in chapter 8.
The RTOS library is the application side counterpart of the Windows SDK (see chapter 2.3).

2.2.1 Windows
A windows application cannot directly call VMF functions but uses RTOS library functions instead.
These functions are provided with the Windows SDK (see below).

2.2.2 RTOS
Some of the VMF communication services have to be synchronized to work properly (e.g. shared
events). In some real-time operating systems it is also necessary to change into kernel mode when
calling such functions in the application layer.
Therefore the RTOS side should not use those VMF functions directly but similar to Windows by using
RTOS library functions instead.
VmfWin provides a portable RTOS library which is split into two parts, an OS independent part and an
OS dependent part which has to be adjusted.

2.2.3 VMF Interface serialization
On some operating systems it is necessary to serialize VMF functions.
If for example on Windows or Windows CE a VMF function shall be called in user mode (Ring 3) the
call has to be serialized first. In a second step the serialized data have to be transferred to a kernel
driver (using some kind of IoControl call). Then the kernel driver has to de-serialize the data and call
the appropriate VMF functions. The results then will have to be transferred back to the user mode
application.
For this purpose VmfWin contains a portable serialization module. Most of the serialization can be
handled in a generic way, only a few simple functions have to be implemented in a separate operating
system specific adaptation layer. See chapter 7 for more information.

2.3 Windows SDK

The Windows SDK is required for writing Windows applications that shall use the communication
services (e.g. shared memory, shared events) of VmfWin.
The Windows SDK is located below the VmfWin\SDK\inc\Windows and VmfWin\SDK\lib\Windows
directories. It provides the RTOS library for Windows (RtosLib32.h \ RtosLib64.h) together with the
appropriate header files (e.g. rtosLib.h).
This library has to be linked together with the Windows application to access the RTOS library
functions of the dynamic link library RtosLib32.dll (32 bit) or RtosLib64.dll (64 bit) (located in the
VmfWin\Bin\Windows\x86 (32 bit) or VmfWin\Bin\Windows\x64 (64 bit)).

11.11.2024 Page 18/182

2.4 Content, directories

2.4.1 RTOSWin runtime setup
Below “…\RtosWin Runtime” the RTOSWin runtime setup can be found. This will install all drivers and
configuration files required prior to installing the final RTOSWin solution.

2.4.2 VmfWin
All VmfWin components are located below this directory. It contains all components required to build
the RTOSWin product on top of the RTOS Virtual Machine and the Virtual Machine Framework.

2.4.3 SDK
The SDK is located below …\VmfWin\SDK. It consists of the following parts.

a) The Virtual Machine Framework (VMF)
The VMF is the key part of the product used to port an RTOS on top of the RTOS Virtual
Machine. It provides a hardware abstraction layer as well as basic communication and
diagnostic functions.

b) The RTOS Library (rtoslib)
In contrast to the VMF, which is required to porting an RTOS and usually only used in the
RTOS’ Board Support Package, the rtoslib provides functions which the end user application
may use (e.g. communication services).

c) Examples
The MiniBSP/MiniRTOS example shows how to use the VMF hardware abstraction layer, the
RtosVnet example shows how to use the VMF’s network packet library and several other
examples show the usage of the rtoslib.

2.4.3.1 Virtual Machine Framework API

Only three header files located below …\SDK\Defs are required to port the RTOS on top of the RTOS
Virtual Machine. No library has to be linked to the RTOS Board Support Package.

2.4.3.2 VMF interface serialization

The VMF interface serialization is provided for cases when the interface is not available to be called
directly (e.g. in Windows when it is called in user mode it has to be serialized and transferred to a
kernel mode driver).
The generic (portable) source code of the VMF interface serialization can be found in
…\SDK\VmfInterfaceSerializing\KernelMode (for the kernel mode part) and in
…\SDK\VmfInterfaceSerializing\UserMode (for the user mode part). Below these directories there are
some example implementations for the OS adaptation layer (Windows CE, Windows).

2.4.3.3 RTOS Library

The generic (portable) source code of the RTOS Library is located in …\SDK\RtosLib. Beneath this
directory there are some example implementations for the OS adaptation layer (VxWorks, Windows
CE, Windows).

11.11.2024 Page 19/182

2.4.4 Examples

2.4.4.1 MiniBsp

Example BSP. This example BSP can be used as a starting point when creating a Board Support
Package for the target operating system.
The following list explains the functionality of the most important files:

• rtosBspAsm.s
→ boot entry point, function bspInit().

• rtosBoot.c
→ example RTOS boot sequence. Entry point at function rtosInit().

• rtosBsp.c
→ Main BSP functions

• rtosBspTimer.c
→ example timer implementation (the first timer is usually used for the RTOS clock tick timer, the
second timer is a auxiliary timer to be used by the application).

2.4.4.2 MiniRtos

This is a placeholder for a real RTOS. The Mini BSP needs some of these functions.

2.4.4.3 Virtual Network Packet Library

A VxWorks network driver serves as an example how to use the virtual network packet library. This
network driver is used in the ACONTIS VxWin product.

2.4.4.4 RTOS Library

There are several example applications for Windows CE and VxWorks on the RTOS side which use
the RTOS library for communication with Windows.

11.11.2024 Page 20/182

2.5 OEM Files

Some parts of the VmfWin product will also be part of the final RTOSWin product. These are
described in the sections below

2.5.1 Windows runtime files
The Windows runtime files are mandatory to run the RTOS VM.

a) Uploader Utility etc. (…\Bin\Windows\x86)
This utility is required for starting and stopping the RTOS. The Uploader DLL also provides the
rtoslib functions.

b) Drivers (…\Bin\Windows\Drivers)
3 drivers are required to run the RTOS VM. The Network driver RtosVnet.sys provides a
virtual network connection between Windows and the RTOS. The RTOS driver RtosDrv.sys is
the central driver for managing the RTOS VM. The RtosPnp driver and the Rtos-Inf files are
together the main parts of the RTOS Device Management.

2.5.2 SDK for the RTOS Library
(…\SDK\Defs)
These files are required when an Windows application shall be written that wants to use the
rtoslib.

2.5.3 Windows demo runtime
In case a demo version of the RTOSWin product shall be provided a demo version of the RTOS driver
can be used (located in …\Bin\Windows\x64\Drivers\Eval). (64 Bit)
 …\Bin\Windows\x86\ Drivers.Win7\Eval (32 Bit)
If this driver is used instead of the full version the following restrictions will be activated:

– After 30 minutes the RTOS stops for 30 seconds.
– 30 days after starting the RTOS operation the first time the system will not be able to be

started at all.

2.5.4 Additional OEM files
Below the …\SDK\OemSetup directory additional files that may be provided by the RTOSWin product
are located.

2.5.4.1 OEM Setup

Currently an (pseudo) example setup batch file is provided. In case an RTOSWin customer wants to
create his own setup he can find here:
– how to install the RTOS VM Windows device drivers
– how to install the RTOS VM Windows services and Uploader tool
– what environment is necessary to run the RTOS VM (registry settings)
– how the memory configuration has to be done
– …

11.11.2024 Page 21/182

2.6 Build the Mini RTOS

The Mini RTOS is built using the shipped GNU tools.
The following steps have to be executed:

• Start a Windows command shell

• Change into the examples directory

• Set the appropriate environment by running setenv.bat

• Start the build using the BuildMiniRtos.bat file
As result the file MiniRtos.bin will be generated below a newly created obj sub-directory.
This file can be loaded and started by the RTOS-VM Uploader tool.

2.7 Start the Mini RTOS

Using the RTOS-VM Uploader tool the Mini RTOS binary image (MiniRtos.bin) can be loaded
into memory and is then started automatically.
The following additional files are required:

• rtos.config RTOS configuration file including information for the Uploader

• device.config RTOS device configuration file

• vmf.bin VMF binary image

• Windows runtime environment for the RTOS-VM: The Uploader tool, the RTOS
service and the RTOS control application.

The Mini RTOS can then be started with the following command line:
RtosUpload.exe MiniRtos.bin or by using the shortcut in the Windows program menu:

11.11.2024 Page 22/182

2.8 Debug Console

The Virtual Machine Framework provides a virtual I/O channel for transferring data between Windows
and the RTOS (similar to a serial line interface).
The virtual I/O channel may be used as debug console.
The Mini RTOS example used this channel to print out debug information and to wait for some user
input.
The shipped putty Telnet client also supports the virtual I/O channel (using the command line option –
vio).
After starting the Mini RTOS the putty application can be started with the –vio option and the following
messages are printed.

Using the debug console is very helpful in the bring-up phase of the RTOS. Messages can
be printed out at a very early stage.
The file rtosBsp.c contains helpful routines like DbgPrintf() which prints a formatted message
similar to printf() but without needing the RTOS.
The function DbgWait() can be used to stop processing until the user presses a key at the
debug console.

11.11.2024 Page 23/182

3 RTOS configuration
The rtos.config file contains several entries where memory and CPU settings are defined. RTOS
specific settings may also be stored herein; these settings will have to be processed by the RTOS.
Details can be found in the RTOS VM User Manual.

11.11.2024 Page 24/182

4 Using the VMF API functions

Every framework function uses a pointer to the framework and a pointer to a data area. These two
pointers shall be globally defined. The names of the pointer variables are fixed and must be
pFmwkDesc and pvFmwkData.

If paging is disabled pFmwkDesc points to a physical address, otherwise it must point to a virtual
address. The physical base address of the VMF can be found at a specific location in memory, the
VMF anchor descriptor (VMF_ANCHOR_DESC). This location is determined as follows:

Pointer to VMF_ANCHOR_DESC = MemoryStartAddress + VmfAnchorOffset

The value of MemoryStartAddress can be found in the rtos configuration file.
The value of VmfAnchorOffset will be taken from the VMF_OSIMAGE_INFO structure, which should
be compiled into the OS binary file. If a file does not contain the structure the anchor offset will be
taken from the configuration file.

The size of the data area, at which pvFmwkData points, is fixed. It is set by the macro
VMF_FMWK_DATADESC_SIZE.

The VMF can only be used after the variables pFmwkDesc and pvFmwkData are initialized. See
section 5.2 for more details.

Prior to using VMF functions you have to include the vmfInterface.h header file. This file itself includes
rteOs.h, containing data types used by the framework functions, and rteError.h, containing error
definitions.

Example:
#include <vmfInterface.h>

11.11.2024 Page 25/182

5 Booting the RTOS

5.1 Pre-boot steps

The following steps are executed by the RTOS uploader prior to enter the boot entrypoint of the
RTOS.

• Copy the RTOS image file at the appropriate offset inside the RTOS memory area

• Store the VMF management information at the anchor offset address inside the RTOS
memory area

After these preparing steps the boot entrypoint of the RTOS will be called.
The boot entrypoint is called in 32 bit protected mode with valid GDT and SS, DS and CS selectors
that allow 4 GByte of memory to be addressed. Paging is turned off.

5.2 Framework initialization, Framework memory context mapping

Every framework function uses a pointer to the framework and a pointer to a data area. These two
pointers may be globally defined. The names of the pointer variables are fixed and must be
pFmwkDesc and pvFmwkData.

If paging is disabled pFmwkDesc points to a physical address, otherwise it must point to a virtual
address. The physical base address of the VMF can be founded at a specific location in memory, the
VMF anchor descriptor (VMF_ANCHOR_DESC). This location is determined as follows:

Pointer to VMF_ANCHOR_DESC = MemoryStartAddress + VmfAnchorOffset

The value of MemoryStartAddress can be found in the rtos configuration file.
The value of VmfAnchorOffset will be taken from the VMF_OSIMAGE_INFO structure, which should
be compiled into the OS binary file. If a file does not contain the structure the anchor offset will be
taken from the configuration file.

The size of the data area at which pvFmwkData points is fix, it is set by the macro
VMF_FMWK_DATADESC_SIZE.

Prior to using VMF functions you have to include the vmfInterface.h header file. The header file
rteOs.h contains data types used by the framework functions.

Example:
#include <vmfInterface.h>

/**

* DEFINES

*/

#define RTOS_BASE_ADDR 0x1000000 /* base physical address where the RTOS is linked to */

#define RTOS_VMF_ANCHOR_OFFSET 0x2000 /* VMF anchor offset in RTOS memory */

/**

* GLOBALS

*/

PVMF_FMWK_DESC pFmwkDesc = NULL;

VOID* pvFmwkData = NULL;

UINT8 G_oVmfFmwkData[VMF_FMWK_DATADESC_SIZE];

VMF_ANCHOR_DESC* G_pVmfAnchorDesc = (VMF_ANCHOR_DESC*)(RTOS_BASE_ADDR +

RTOS_VMF_ANCHOR_OFFSET);

void FrmwkInit{void)

/* VMF pointers initialization */

pFmwkDesc = (PVMF_FMWK_DESC)G_pVmfAnchorDesc->dwFmwkAddrPhys;

pvFmwkData = &G_oVmfFmwkData[0];

// now framework functions can be used (after VMF initialization!)

}

11.11.2024 Page 26/182

Prior to calling any framework functions some memory area mappings have to be initialized.
Afterwards the basic framework initialization has to be executed with paging turned on.

Step 1: aKernelMapTable[]

➔ The anchor descriptor (see chapter 5.2) contains the aKernelMapTable[] member, a mapping table
with physical memory areas which have to be mapped at an arbitrary virtual memory location. The
mapping table contains the following information for each memory area:

• Memory type (e.g. IOAPIC memory area, internal shared memory area, virtual network
memory area) including information about executable / writable / cached

• Physical base address

• Memory size
The virtual memory location must be calculated and returned back to the Framework.
The following macros are used in the Framework to identify the type of memory.

VMF_KERNELMAP_RTOSMEMORY → RTOS memory area
VMF_KERNELMAP_FRAMEWORK → VMF binary module memory area
VMF_KERNELMAP_INTERNALSHM → Internal shared memory
VMF_KERNELMAP_USERSHM → User shared memory. Superseded by

VMF_KERNELMAP_SHM
VMF_KERNELMAP_VNET → Shared memory area for the virtual network
VMF_KERNELMAP_INTERRUPT_PROCESSOR → Local APIC memory
VMF_KERNELMAP_INTERRUPT_IOAPIC → I/O APIC memory
VMF_KERNELMAP_PROCESSORBOOTCODE → Memory area with processor boot code
VMF_KERNELMAP_TIMESTAMP_HPET → HPET memory area
VMF_KERNELMAP_SHM → Shared memory area(s)

Besides the type there are additional informations (executable / writable / cached) included:

VMF_KERNELMAP_NOEXECUTE → Not executable / executable
VMF_KERNELMAP_READONLY → Read only / read and writable
VMF_KERNELMAP_UNCACHED → Uncached / cached

VMF_KERNELMAP_TYPEMASK is a mask to be used for separating the memory type from the
additional information.

The RTOS (BSP) has to map these memory areas at an arbitrary virtual address location. The virtual
base addresses then have to be stored in the mapping table.
Later, calls to some of the framework function will then require a pointer to the mapping table to be
able to access these memory areas – the framework function will then use the virtual base address
provided by the RTOS.

Optional step 1b: map memory regions, enable paging
➔ In this step the MMU will be enabled and all memory areas located in aKernelMapTable[] will

have to be mapped, the virtual addresses in the mapping table will then have to be set to the
appropriate values.
The areas to be mapped are (see above):

• RTOS framework binary image

• Internal shared memory

• Additional framework memory regions

Step 2: call vmfCoreInit()
➔ Basic framework hardware initialization (e.g. initializing framework data descriptor)

Optional step 2b: map memory regions; enable paging (if not done in 1b).
➔ After the MMU is enabled the virtual addresses in the kernel mapping table have to be set to the
appropriate values.

...

for (nLoop = 0; nLoop < nUsedEntries ; nLoop++)

{

if ((VMF_KERNELMAP_TYPEMASK && aVmfKernelMap[nLoop].dwType) == VMF_KERNELMAP_FRAMEWORK)

 {

pFmwkDesc = aVmfKernelMap[nLoop].dwVirtAddress;

11.11.2024 Page 27/182

 break;

 }

}

vmfCoreInit(G_pVmfAnchorDesc, aVmfKernelMap, nUsedEntries);

Step 3: call vmfCoreHwInit()
➔ Basic hardware initialization (e.g. interrupt controller, timer)

11.11.2024 Page 28/182

5.3 RTOS boot

The last step is to finish booting the RTOS.

5.4 Shared processor core: RTOS idle loop

If the RTOS is running in shared mode (shared with a primary operating system on the same
processor core, e.g. Windows) it has to return every time when entering the idle loop. Otherwise the
primary operating system will never be executed.
A call to vmfCoreIdleRoutine() will return to the primary OS (e.g. Windows).
If the RTOS does not provide a specific idle loop a task with lowest priority has to be created which
has to call this function. The RTOS should not run any other task on the same or a lower priority
because it might never get CPU time.

11.11.2024 Page 29/182

6 Virtual Machine Framework Interface

6.1 VMF function call synchronization

Some of the VMF functions are not re-entrant and their calls should be synchronized. Please take care to
the synchronization notes in the function group description.

11.11.2024 Page 30/182

6.2 VMF Versioning

6.2.1 Using OS image information

The VMF_OSIMAGE_INFO contains information about the OS requirements regarding its memory
address, required framework version, entry point offset and more.
It can be located anywhere within the OS image file, but a position at the beginning should be
preferred to minimize search time.

typedef struct _VMF_OSIMAGE_INFO

{

 UINT8 aSignature[16]; /* must be VMF_OSIMAGE_INFO_SIGNATURE_DATA */

 UINT32 dwSize; /* must be sizeof(VMF_OSIMAGE_INFO) */

 UINT32 dwProductVersion; /* must be VMF_PRODUCT_VERS_NO */

 UINT32 dwOsVersion; /* OS version number */

 UINT32 dwFmwkVersionRequired; /* must be VMF_FMWK_VERSION */

 UINT32 dwFmwkAnchorOffset; /* offset from config file entry "MemoryStartAddress" to

 VMF anchor desc */

 UINT32 dwFmwkDataOffset; /* offset from config file entry "MemoryStartAddress" to

 VMF data desc */

 UINT32 dwEntryPointOffset; /* offset from config file entry "MemoryStartAddress" to

 entry point */

 UINT32 dwImageLoadOffset; /* offset from config file entry "MemoryStartAddress" to

 OS image load address */

 UINT64 qwImageLoadAddress; /* image load address - will be used to verify config file

 entry "MemoryStartAddress" */

 UINT64 qwMemoryMinimumSize; /* minimum RAM requirement - will be used to verify config

 file entry "MemorySize" */

 UINT32 aFlags[4]; /* see VMF_OSIMAGE_INFO_FLAG_... */

 CHAR aOsName[16]; /* can be any string – last character must be '\0' */

 VMF_OSIMAGE_RESOURCE_REQUEST aResourceRequests[VMF_OSIMAGE_INFO_RESOURCE_REQUEST_MAX];

} VMF_PACKED(1) VMF_OSIMAGE_INFO, *PVMF_OSIMAGE_INFO;

Flags:

- VMF_OSIMAGE_INFO_FLAG_0_ASOFFSET_IMAGELOADOFFSET,
VMF_OSIMAGE_INFO_FLAG_0_ASOFFSET_ENTRYPOINTOFFSET,
VMF_OSIMAGE_INFO_FLAG_0_ASOFFSET_FMWKVERSION,
VMF_OSIMAGE_INFO_FLAG_0_ASOFFSET_IMAGELOADADDRESS,
VMF_OSIMAGE_INFO_FLAG_0_ASOFFSET_MEMORYMINIMUMSIZE
Setting one of these flags means that the corresponding value will be used as OS image file
offset to the real value.
Example:
- aFlags[0] contains VMF_OSIMAGE_INFO_FLAG_0_ASOFFSET_FMWKVERSION
- dwFmwkVersionRequired contains a value of 132
This causes the required framework version will be read from OS image file at offset 132.

- VMF_OSIMAGE_INFO_FLAG_1_MULTISMP
When aFlags[1] contains this flag the OS can handle multiple SMP configuration – for
example Windows using processor mask 0x3 and RTOS 0xC.
For such a configuration the OS must be capable to drain off some interrupts.

Special values:

- VMF_OSIMAGE_INFO_FMWKDATAOFFSET_UNKNOWN
Can be used if the framework data offset can not be determined.

- VMF_OSIMAGE_INFO_IMAGELOADADDRESS_UNKNOWN
Can be used if the image load address can not be determined.

- VMF_OSIMAGE_INFO_IMAGELOADADDRESS_RELOCATABLE
Must be used if the image is relocatable.

- VMF_OSIMAGE_INFO_IMAGEMINIMUMRAM_UNKNOWN
Can be used if the minimum ram requirement can not be determined.

The resource request structure is currently reserved for further use.

11.11.2024 Page 31/182

6.2.2 Without OS image information

The four bytes of a version are representing MAJOR.MINOR.SERVICEPACK.BUILD number.

It is possible to replace the VMF binary with a newer version – for example to increase functionality.
To detect incompatibilities the Uploader compares the version of the framework binary to be loaded
and the version required by the OS image to be started with the version expected.

The version expected is VMF_FMWK_VERSION, which is defined in vmfInterface.h.

- Major number is required to be equal.
- Minor number of VMF binary must be greater or equal to the expected one
- Minor number of OS binary must be less or equal to the expected one

The Uploader will read four bytes from the OS image file at an offset given by the config file. This
offset is defined in the OS section using the name "VmfVersionOffset".

Example:
[Rtos]

; …
"VmfVersionOffset"=dword:80 ; remind: value is hex!
; …

For compatibility this check can be disabled using an offset value of FFFFFFFF.

11.11.2024 Page 32/182

6.3 VMF anchor descriptor

The VMF anchor descriptor is located at a fixed address. This address must be well known by the
RTOS. The VMF anchor descriptor contains several important values which are needed prior to be
able to booting the RTOS and using the VMF functions.

typedef struct _VMF_ANCHOR_DESC

{

 UINT32 dwSignature;

 UINT32 dwFmwkAddrPhys;

 UINT32 dwOsId;

 UINT32 dwKernelMapEntries;

 VMF_KERNELMAP_ENTRY aKernelMapTable[VMF_KERNELMAP_MAX_ENTRY_COUNT];

} VMF_PACKED(1) VMF_ANCHOR_DESC;

Description
dwSignature Validation signature (value VMF_ANCHOR_SIGNATURE)
dwFmwkAddrPhys Physical address where the VMF binary image is located
dwOsId OS ID (0 = first OS, 1 = second OS, …)
dwKernelMapEntries Number of entries in the aKernelMapTable[] array
aKernelMapTable[] Memory mapping information (see section 6.2)

11.11.2024 Page 33/182

6.4 Kernel memory mapping descriptor

The kernel memory mapping descriptor contains information about memory blocks which have to be
mapped into the VMF memory space. The VMF functions require access to these memory areas.

typedef struct

{

 UINT32 dwPhysAddress;

 UINT32 dwSize;

 UINT32 dwType;

 UINT32 dwVirtAddress;

} VMF_PACKED(1) VMF_KERNELMAP_ENTRY;

Description
dwPhysAddress Physical address of the memory area
dwSize Size of the memory area in bytes
dwType Memory type bit field. According to the memory type different MMU settings have to

be used.
Bit31: No execute (VMF_KERNELMAP_NOEXECUTE)
Bit30: Read only (VMF_KERNELMAP_READONLY)
Bit29: Uncached (VMF_KERNELMAP_UNCACHED)
Bit28-8: Reserved
Bit7-0: Type (VMF_KERNELMAP_TYPEMASK)
The following type definitions exist:
VMF_KERNELMAP_RTOSMEMORY
→ RTOS memory area
VMF_KERNELMAP_FRAMEWORK
→ Framework binary image memory area
VMF_KERNELMAP_INTERNALSHM – omitted
→ Internal shared memory area
VMF_KERNELMAP_USERSHM
→ User shared memory area – superseded by VMF_KERNELMAP_SHM
VMF_KERNELMAP_VNET
→ Virtual Network shared memory area – omitted
VMF_KERNELMAP_INTERRUPT_PROCESSOR
→ Local Apic interrupt controller memory
VMF_KERNELMAP_INTERRUPT_IOAPIC
→ I/O Apic interrupt controller memory
VMF_KERNELMAP_PROCESSORBOOTCODE
→ Processor boot code memory area
VMF_KERNELMAP_TIMESTAMP_HPET
→ High Performance Event Timer memory area
VMF_KERNELMAP_SHM
→ Extended shared memory

dwVirtAddress Virtual address where the memory is mapped to (has to be set by the RTOS)

11.11.2024 Page 34/182

6.5 Unavailable, unsupported functions

The following functions are described in this manual but currently either not available or not fully
supported.

• vmfDeviceResourceDmaGet()

• vmfDeviceResourceInterruptGet()

• vmfDeviceResourcePortGet()

• vmfDeviceResourceMemoryGet()

• vmfConfigGetFirstValueA()

• vmfConfigGetNextValueA()

• vmfInByte()

• vmfOutByte()

• vmfInWord()

• vmfOutWord()

• vmfInDword()

• vmfOutDword()

• vmfEventGetState()

• vmfEventShowA()

• vmfEventShowW()

• vmfShmGetInfoW()

• vmfMessageBoxShowA()

• vmfMessageBoxShowW()

• vmfProcessorConfigShowA()

• vmfProcessorConfigShowW()

• vmfIoApicConfigShowA()

• vmfIoApicConfigShowW()

• vmfDeviceConfigShowA()

• vmfDeviceConfigShowW()

• vmfTimeSyncIsMaster()

• vmfTimeSyncDisable()

• vmfTimeSyncShowA()

• vmfTimeSyncShowW()

• vmfTimeSyncConvertTime()

• vmfTimzezoneSyncIsMaster()

• vmfTimzezoneSyncGetMaster()

• vmfTimzezoneSyncSetMaster()

• vmfTimzezoneSyncDisable()

• vmfTimezoneSyncGetMasterTimezoneA()

• vmfTimezoneSyncGetMasterTimezoneW()

• vmfTimezoneSyncGetOsTimezoneA()

• vmfTimezoneSyncGetOsTimezoneW()

• vmfTimezoneSyncSetOsTimezoneA()

• vmfTimezoneSyncSetOsTimezoneW()

• vmfTimezoneSyncShowA()

• vmfTimezoneSyncShowW()

• vmfOsGetInfoW()

• vmfConfigRegKeyOpenW()

• vmfConfigRegKeyEnumerateW()

• vmfConfigRegValueEnumerateW()

11.11.2024 Page 35/182

6.6 Core interface

6.6.1 vmfCorePreinit
This function has been renamed to “vmfCoreLoad”.

6.6.2 vmfCoreLoad
Initialize globally the VMF.

UINT32 vmfCoreLoad(
 VOID* pvFmwkConfig,
 UINT32 dwFmwkConfigSize
);

Parameter
pvFmwkConfig
 [in] Pointer to the configuration area.
dwFmwkConfigSize
 [in] Size of the configuration area.

Return
RTE_SUCCESS on success and an error-code on failure.

Comment
– This function should be called once by the VMF-manager, typically from the RtosDrv under
Windows.

6.6.3 vmfCoreUnload
De-Initialize globally the VMF.

UINT32 vmfCoreUnload(
 VOID
);

Parameter
–

Return
RTE_SUCCESS on success and an error-code on failure.

Comment
– This function should be called once by the VMF-manager, typically from the RtosDrv under
Windows.

11.11.2024 Page 36/182

6.6.4 vmfCoreInit
Initialize the RTOS specific part of the VMF for the actual RTOS.

UINT32 vmfCoreInit (
 VMF_ANCHOR_DESC* pAnchorDesc,
 VMF_KERNELMAP_ENTRY* pKernelMapTable,
 INT32 nEntries
);

Parameter
pAnchorDesc
 [in] pointer to the anchor descriptor.
pKernelMapTable
 [in] pointer to a buffer containing a kernel mapping table, filled with the virtual address

information.
nEntries
 [in] number of entries in the kernel mapping table.

Return
RTE_SUCCESS on success and an error-code on failure.

Comment
– This function should be call once by every RTOS, prior calling any other VMF function. The kernel
mapping table should be based on the table placed in the anchor descriptor and the virtual address
informations provided by the RTOS.

6.6.5 vmfCoreHwInit
Initialize the hardware specific part of the VMF for the actual RTOS and the actual processor.

UINT32 vmfCoreHwInit (
 VOID
);

Parameter
–

Return
RTE_SUCCESS on success and an error-code on failure.

Comment
This function should be called by every RTOS on each started processor (including the boot
processor).
Spurious- and error- interrupt handler have to be initialized before calling this function.
Interrupts must remain closed on the processor until this function was called.

11.11.2024 Page 37/182

6.6.6 vmfCoreGetKernelMapTable
Get the kernel mapping table for the actual RTOS.
This function is deprecated, use the mapping table stored in the anchor descriptor instead (see
chapter 6.1 and 6.4).

UINT32 vmfCoreGetKernelMapTable (
 VMF_ANCHOR_DESC* pAnchorDesc,
 VMF_KERNELMAP_ENTRY* pKernelMapTable,
 UINT32 dwFreeEntries,
 UINT32* pdwUsedEntries
);

Parameter
pAnchorDesc
 [in] pointer to the anchor descriptor.
pKernelMapTable
 [in/out] pointer to a buffer receiving the kernel mapping table.
dFreeEntries
 [in] number of entries which can be copied into the buffer.
pdwUsedEntries
 [out] number of entries copied into the buffer.

Return
RTE_SUCCESS on success and an error-code on failure.

Comment
–

6.6.7 vmfCoreRelocate
Relocate the VMF.

UINT32 vmfCoreRelocate (
 VMF_KERNELMAP_ENTRY* pKernelMapTable,
 INT32 nEntries
);

Parameter
pKernelMapTable
 [in] Pointer to the new kernel map table.
dwFmwkConfigSize
 [in] Number of entries in the new kernel map table.

Return
RTE_SUCCESS on success and an error-code on failure.

Comment
– This function should be called by the VMF-manager, typically from the RtosDrv under Windows.

11.11.2024 Page 38/182

6.6.8 vmfCoreHandle
Callback routine for OS on certain events.

UINT32 vmfCoreHandle (
 UINT32 dwTypeToHandle,
 UINT32 dwParam
);

Parameter
dwTypeToHandle
 [in] Type of the event to be handled:

- VMF_CORE_HANDLE_BSOD

dwParam
 [in] Parameter depending on the type to be handled.

- VMF_CORE_HANDLE_BSOD: Unused

Return
RTE_SUCCESS on success and an error-code on failure.

Comment

This function should be called by an OS being able to host other OS for handling bluescreens.
Additional events may be handled by this function in future.

11.11.2024 Page 39/182

6.7 OS switching

6.7.1 vmfTunnelSwitch
Execute a switch job in the tunnel context.

UINT32 vmfTunnelSwitch (
 UINT32 dwOsId,
 UINT32 dwJobId,
 UINT32 dwParam
);

Parameter
dwOsId
 [in] ID of the targeted operating system.
dwJobId
 [in] ID of the job to do with the targeted operating system.
dwParam
 [in] parameter for the selected job.

Return
RTE_SUCCESS on success and an error-code on failure.

Comment
dwParam is used according the dwJobId as following:

dwJobId: VMF_TUNNEL_JOB_ID_BOOT -> dwParam: EntryPoint
dwJobId: VMF_TUNNEL_JOB_ID_SWITCH -> dwParam: Unused
dwJobId: VMF_TUNNEL_JOB_ID_RETURN -> dwParam: Unused

Deprecated:
dwJobId: VMF_TUNNEL_JOB_ID_SWITCHWITHIRQ
Use vmfInterruptIsr (dwVector) instead.

11.11.2024 Page 40/182

6.8 Multiprocessor management

Synchronization notes:
The functions vmfProcessorStart and vmfProcessorStop use shared informations and their calls must
be synchronized against themselves and against each other.

6.8.1 vmfProcessorGetMaskAll
Get mask of all RTOS processors.

UINT32 vmfProcessorGetMaskAll (
 UINT32* pdwMaskAll,
);

Parameter
pwdMaskAll
 [out] pointer to the variable receiving the processor mask.

Return
RTE_SUCCESS on success and an error-code on failure.

Comment
–

6.8.2 vmfProcessorGetMaskCurrent
Get mask of current processor.

UINT32 vmfProcessorGetMaskCurrent (
 UINT32* pdwMaskCurrent,
);

Parameter
pwdMaskCurrent
 [out] pointer to the variable receiving the processor mask.

Return
RTE_SUCCESS on success and an error-code on failure.

Comment
–

11.11.2024 Page 41/182

6.8.3 vmfProcessorGetMaskShared
Get mask of all rtos processors shared with an other OS.

UINT32 vmfProcessorGetMaskShared (
 UINT32* pdwMaskShared,
);

Parameter
pwdMaskShared
 [out] pointer to the variable receiving the processor mask.

Return
RTE_SUCCESS on success and an error-code on failure.

Comment
–

6.8.4 vmfProcessorStart
Starts the processor specified by the processor mask.

UINT32 vmfProcessorStart (
 UINT32 dwProcessorMask,
 UINT32 dwEntryPoint
);

Parameter
dwProcessorMask
 [in] processor mask specifying the processor to start.
dwEntryPoint
 [in] physical address of the entry point for the processor.

Return
RTE_SUCCESS on success and an error-code on failure.

Comment
–

6.8.5 vmfProcessorStop
Stops the processor specified by processor mask.

UINT32 vmfProcessorStop (
 UINT32 dwProcessorMask
);

Parameter
dwProcessorMask
 [in] processor mask specifying the processor to stop.

Return
RTE_SUCCESS on success and an error-code on failure.

Comment
–

11.11.2024 Page 42/182

6.8.6 vmfProcessorGetLocalApicId
Get local APIC ID of the specified processor.

UINT32 vmfProcessorGetLocalApicId (
 UINT32 dwProcessorMask,
 UINT32* pdwLocalApicId
);

Parameter
dwProcessorMask
 [in] processor mask specifying the processor to get the local APIC ID from.
pdwLocalApicId
 [out] pointer to the variable receiving the local APIC ID.

Return
RTE_SUCCESS on success and an error-code on failure.

Comment
–

6.8.7 vmfProcessorGetCpuId
Get informations about the current processor.

UINT32 vmfProcessorGetCpuId (
 UINT32 aCpuInfo[4],
 UINT32 dwInfoType,
 UINT32 dwSelector
);

Parameter
aCpuInfo

 [out] aCpuInfo contains the results where aCpuInfo[0] = EAX, aCpuInfo[1] = EBX,
aCpuInfo[2] = ECX and aCpuInfo[3] = EDX.

dwInfoType
 [in] EAX will be set to dwInfoType before executing cpuid.
dwSelector
 [in] ECX will be set to dwSelector before executing cpuid

Return
RTE_SUCCESS on success and an error-code on failure.

Comment
Please read processor reference for detailed information about CPUID instruction.

6.8.8 vmfProcessorLock
This function locks the specified host processor(s) until vmfProcessorUnlock is called.

UINT32 vmfProcessorLock (
 UINT32 dwProcessorMask,
 VMF_HANDLE *phLock
);

Parameter
dwProcessorMask

11.11.2024 Page 43/182

 [in] The mask of the processor(s) to be locked or 0 to autoselect a processor.
Autoselect will lock all host processor(s).
The mask only allows host processors – any other value will return parameter error.

phLock
 [out] Pointer to a handle which is required for calling vmfProcessorUnlock.

Return
RTE_SUCCESS on success and an error-code on failure.

Comment
To use this functionality COMM interrupt mode has to be enabled at least for host (Windows) side.

- RtosDrv has to be configured to use an interrupt:
- [Host] “CommInterruptMode” must be set to 1.

Please refer to “RtosVM-UserManual.pdf” chapter “OS communication” for details.

6.8.9 vmfProcessorUnlock
This function unlocks a processor previously locked using vmfProcessorLock.

UINT32 vmfProcessorUnlock (
 VMF_HANDLE *phLock
);

Parameter
phLock
 [in] Pointer to a handle received from call to vmfProcessorLock.

Return
RTE_SUCCESS on success and an error-code on failure.

Comment
See comment section of vmfProcessorLock for details.

11.11.2024 Page 44/182

6.9 Virtual Machine Device Management

The virtual machine device management is responsible for managing all RTOS devices.
Every RTOS device is represented using a unique device name. The name for a physical device is set
according to the name the Windows Device Manager is using.
Currently the following device types exist:

• PCI and PCIe physical devices

• Other physical devices
o ISA bus devices
o legacy devices (e.g. serial COM interface)

• VMF defined virtual devices
o The local APIC timer (device name = “RTOS Local Apic Timer”)
o Virtual network driver (device name = “RTOS Vnet”)
o Virtual timer 0 (device name = “RTOS Timer0”)
o Virtual timer 1 (device name = “RTOS Timer1”)

• Additional user defined virtual devices
If the RTOS needs to generate virtual interrupts a virtual device is required which generates such
an interrupt.
This is necessary for example in case Inter-Processor-Interrupts (IPIs) shall be generated to
synchronize multi processor systems.

All physical devices and the VMF defined virtual devices will be automatically created. To enable a
physical device the RtosPnp driver has to be installed to assign the physical device to the RTOS.
Additional user defined virtual devices have to be manually defined in the device.config file.
In the following example a virtual device (device index 5) representing an IPI is defined:
The section [InterruptSource#] defines the properties of one specific interrupt source (related to one
device).
The section [InterruptTarget#] defines the target properties of one specific interrupt source (e.g. the
which CPU cores will be interrupted.
In the following example the entry [Device5] defines the properties for a virtual device representing an
IPI. The interrupt source and target properties for this virtual device are stored in the sections
[InterruptSource5] and [InterruptTarget5].

[Device5]

 "RtosDeviceType"=dword:1 ; 01 = virtual device

 "RtosDeviceName"="RTOS IPI Device" ; name of the virtual device

 "OsId"=dword:FFFFFFFE ; 0xFFFFFFFE = autodetect

 "InterruptSourceList"=multi_sz:"5" ; refers to [InterruptSource5]

[InterruptSource5]

 "InterruptSourceType"=dword:3 ; 03 = IPI interrupt

 "InterruptTargetList"=multi_sz:"5" ; refers to [InterruptTarget5]

 "InterruptId"=dword:FFFFFFFE ; generate irq id automatically

[InterruptTarget5]

 "InterruptTargetAddressType"=dword:0 ; 0: target address = bit mask of

 ; CPUs receiving this IPI

 "InterruptTargetAddress"=dword:6 ; Binary 0110 = processor 1 and 2

 "InterruptProcessorVector"=dword:FC ; interrupt vector

11.11.2024 Page 45/182

6.9.1 Interrupt IDs
One single device (physical device as well as virtual devices) may require one or multiple interrupts.
Every single interrupt is identified by a unique interrupt ID.
The interrupt IDs are determined automatically by the RTOS VM. It is not predictable which interrupt
IDs will belong to which physical or virtual device.
The only assumption that can be made is that the interrupt IDs on a given system will not be changed
by the RTOS VM if:

• The Windows interrupt resources are not changed (if no driver updates or hardware changes
are made, Windows usually will not change interrupt resources)

• The RTOS VM physical and virtual devices are not changed
After a physical device is assigned to the RTOS the first time one cannot assume that existing
interrupt IDs will not be changed.

11.11.2024 Page 46/182

6.9.2 vmfDeviceIsForRtosA
Determine whether the specified device and the device interrupt index is assigned to the RTOS or not.

UINT32 vmfDeviceIsForRtosA (
 CHAR* szName,
 UINT32 dwInterruptIndex,
 BOOL* pbIsForRtos
);

Parameter
szName
 [in] ascii device name (as shown in the Windows Device Manager).
dwInterruptIndex
 [in] interrupt index in case the device generates more than one interrupt.
pbIsForRtos
 [out] TRUE if the device is for Rtos or FALSE if not.

Return
RTE_SUCCESS on success and an error-code on failure.

Comment
–

6.9.3 vmfDeviceIsForRtosW
Determine whether the specified device and the device interrupt index is assigned to the RTOS or not.

UINT32 vmfDeviceIsForRtosW (
 WCHAR* wszName,
 UINT32 dwInterruptIndex,
 BOOL* pbIsForRtos
);

Parameter
wszName
 [in] unicode device name (as shown in the Windows Device Manager).
dwInterruptIndex
 [in] interrupt index in case the device generates more than one interrupt.
pbIsForRtos
 [out] TRUE if the device is for Rtos or FALSE if not.

Return
RTE_SUCCESS on success and an error-code on failure.

Comment
–

6.9.4 vmfDevicePciIsForRtos
Determine whether the specified PCI device is assigned to the RTOS or not.

UINT32 vmfDevicePciIsForRtos (
 INT32 nBus,
 INT32 nDevice,
 INT32 nFunction,
 UINT32 dwInterruptIndex
 BOOL* pbIsForRtos
);

11.11.2024 Page 47/182

Parameter
nBus
 [in] PCI bus number.
nDevice
 [in] PCI device number.
nFunction
 [in] PCI function number.
dwInterruptIndex
 [in] interrupt index in case the device generates more than one interrupt.
pbIsForRtos
 [out] TRUE if the device is for Rtos or FALSE if not.

Return
RTE_SUCCESS on success and an error-code on failure.

Comment
–

6.9.5 vmfDeviceIoIsForRtos
Determine whether the specified device is assigned to the RTOS or not.

UINT32 vmfDeviceIoIsForRtos (
 UINT32 dwIoPort
 BOOL* pbIsForRtos
);

Parameter
dwIoPort
 [in] IO port used to access the device.
pbIsForRtos
 [out] TRUE if the device is for Rtos or FALSE if not.

Return
RTE_SUCCESS on success and an error-code on failure.

Comment
–

6.9.6 vmfDeviceInterruptIdFromNameA
Determine the interrupt id of the specified device.

UINT32 vmfDeviceIInterruptIdFromNameA (
 CHAR* szName,
 UINT32 dwInterruptIndex,
 UINT32* pdwInterruptId
);

Parameter
szName
 [in] ascii device name (as shown in the Windows Device Manager).
dwInterruptIndex
 [in] interrupt index in case the device generates more than one interrupt.
pdwInterruptId
 [out] interrupt id of the device.

Return
RTE_SUCCESS when a valid interrupt Id was returned or an error-code on failure.

Comment

11.11.2024 Page 48/182

–

6.9.7 vmfDeviceInterruptIdFromNameW
Determine the interrupt id of the specified device.

UINT32 vmfDeviceIInterruptIdFromNameW (
 WCHAR* wszName,
 UINT32 dwInterruptIndex,
 UINT32* pdwInterruptId
);

Parameter
wszName
 [in] unicode device name (as shown in the Windows Device Manager).
dwInterruptIndex
 [in] interrupt index in case the device generates more than one interrupt.
pdwInterruptId
 [out] interrupt id of the device.

Return
RTE_SUCCESS when a valid interrupt Id was returned or an error-code on failure.

Comment
–

6.9.8 vmfDeviceResourceDmaGet
Get DMA informations for the selected device.

UINT32 vmfDeviceResourceDmaGet (
 UINT32 dwDeviceId,
 UINT32 dwIndex,
 PVMF_DEVICE_DMA pDma
);

Parameter
dwDeviceId
 [in] ID of the device to get the informations from.
dwIndex
 [in] index in the DMA information table.
pDma
 [out] pointer to the buffer receiving the DMA informations.

Return
RTE_SUCCESS on success and an error-code on failure.

Comment
VMF_DEVICE_DMA.dwSize must be initialized with sizeof(VMF_DEVICE_DMA).

11.11.2024 Page 49/182

6.9.9 vmfDeviceResourceInterruptGet

UINT32 vmfDeviceResourceInterruptGet (
 UINT32 dwDeviceId,
 UINT32 dwIndex,
 PVMF_DEVICE_INTERRUPT pInterrupt
);

Parameter
dwDeviceId
 [in] ID of the device to get the informations from.
dwIndex
 [in] index in the interrupt information table.
pInterrupt
 [out] pointer to the buffer receiving the interrupt informations.

Return
RTE_SUCCESS on success and an error-code on failure.

Comment
VMF_DEVICE_INTERRUPT.dwSize must be initialized with sizeof(VMF_DEVICE_INTERRUPT).

6.9.10 vmfDeviceResourceInterruptSet

UINT32 vmfDeviceResourceInterruptSet (
 UINT32 dwDeviceId,
 UINT32 dwIndex,
 PVMF_DEVICE_INTERRUPT pInterrupt
);

Parameter
dwDeviceId
 [in] ID of the device to get the informations from.
dwIndex
 [in] index in the interrupt information table.
pInterrupt
 [in] pointer to the buffer containing the interrupt informations.

Return
RTE_SUCCESS on success and an error-code on failure.

Comment
VMF_DEVICE_INTERRUPT.dwSize must be initialized with sizeof(VMF_DEVICE_INTERRUPT).
This function can be used to update an interrupt vector. It can be called by HOST or by an
ExclusiveCore RTOS. The interrupt to be modified must be disabled when calling this function.
It is recommended to call vmfDeviceResourceInterruptGet() first, modify the vector and then call
vmfDeviceResourceInterruptSet().

6.9.11 vmfDeviceResourceIoPortGet

UINT32 vmfDeviceResourceIoPortGet (
 UINT32 dwDeviceId,
 UINT32 dwIndex,
 PVMF_DEVICE_IOPORT pIoPort

11.11.2024 Page 50/182

);

Parameter
dwDeviceId
 [in] ID of the device to get the informations from.
dwIndex
 [in] index in the IO information table.
pIoPort
 [out] pointer to the buffer receiving the IO informations.

Return
RTE_SUCCESS on success and an error-code on failure.

Comment
VMF_DEVICE_IOPORT.dwSize must be initialized with sizeof(VMF_DEVICE_IOPORT).

11.11.2024 Page 51/182

6.9.12 vmfDeviceResourceMemoryGet

UINT32 vmfDeviceResourceMemoryGet (
 UINT32 dwDeviceId,
 UINT32 dwIndex,
 PVMF_DEVICE_MEMORY pMemory
);

Parameter
dwDeviceId
 [in] ID of the device to get the informations from.
dwIndex
 [in] index in the memory information table.
pMemory
 [out] pointer to the buffer receiving the memory informations.

Return
RTE_SUCCESS on success and an error-code on failure.

Comment
VMF_DEVICE_MEMORY.dwSize must be initialized with sizeof(VMF_DEVICE_MEMORY).

6.9.13 vmfDeviceGetIdByPci

UINT32 vmfDeviceGetIdByPci (
 UINT32 dwBus,
 UINT32 dwDevice,
 UINT32 dwFunction,
 UINT32* pdwDeviceId
);

Parameter
dwBus

[in] High word: PCI segment.
Low word: PCI bus number.

dwDevice
 [in] PCI device number.
dwFunction
 [in] PCI function number.
pdwDeviceId
 [out] ID of the device – required for example to query resources.

Return
RTE_SUCCESS if the device is available for the calling OS and an error-code if not or on failure.

Comment
–

11.11.2024 Page 52/182

6.10 Interrupts

6.10.1 vmfInterruptLock

UINT32 vmfInterruptLock (
 VOID
);

Parameter
–

Return
RTE_SUCCESS on success and an error-code on failure.

Comment
–

6.10.2 vmfInterruptUnlock

UINT32 vmfInterruptUnlock (
 VOID
);

Parameter
–

Return
RTE_SUCCESS on success and an error-code on failure.

Comment
–

6.10.3 vmfInterruptIsApicUsed

UINT32 vmfInterruptIsApicUsed (
 BOOL* pbIsApic
);

Parameter
pbIsApic
 [out] TRUE if Apic is used, FALSE otherwise.

Return
RTE_SUCCESS on success and an error-code on failure.

Comment
–

11.11.2024 Page 53/182

6.10.4 vmfInterruptVectorToId
Converts an interrupt vector to an interrupt id.

UINT32 vmfInterruptVectorToId (
 UINT32 dwInterruptVector,
 UINT32* pwdInterruptId
);

Parameter
dwInterruptVector
 [in] interrupt vector.
pdwInterruptId
 [out] interrupt id.

Return
RTE_SUCCESS on success and an error-code on failure.

Comment
–

6.10.5 vmfInterruptIdToVector
Converts an interrupt id to an interrupt vector.
The interrupt id is an internally defined value that should not be evaluated by the RTOS. The interrupt
vector is the offset in the processor’s vector table. Valid values for the vector are 0 to 254 (0xFE).

UINT32 vmfInterruptIdToVector (
 UINT32 dwInterruptId,
 UINT32* pdwInterruptVector
);

Parameter
dwInterruptId
 [in] interrupt id.
pdwInterruptVector
 [out] interrupt vector.

Return
RTE_SUCCESS on success and an error-code on failure.

Comment
–

6.10.6 vmfInterruptEnable

UINT32 vmfInterruptEnable (
 UINT32 dwInterruptId,
 UINT32 dwProcessorMask,
 UINT32 dwFlags
);

Parameter
dwInterruptId
 [in] interrupt id.
dwProcessorMask
 [in] processor mask.
dwFlags

11.11.2024 Page 54/182

 [in] flags (unused).

Return
RTE_SUCCESS on success and an error-code on failure.

Comment
–

6.10.7 vmfInterruptDisable

UINT32 vmfInterruptDisable (
 UINT32 dwInterruptId,
 UINT32 dwProcessorMask,
 UINT32 dwFlags
);

Parameter
dwInterruptId
 [in] interrupt id.
dwProcessorMask
 [in] processor mask.
dwFlags
 [in] flags (unused).

Return
RTE_SUCCESS on success and an error-code on failure.

Comment
–

6.10.8 vmfInterruptGenerate
Generate (simulate) an interrupt.

UINT32 vmfInterruptGenerate (
 UINT32 dwInterruptId
 UINT32 dwProcessorMask,
 UINT32 dwFlags
);

Parameter
dwInterruptId
 [in] interrupt id of the interrupt to be generated.
dwProcessorMask
 [in] processor mask.
dwFlags
 [in] flags (unused).

Return
RTE_SUCCESS on success and an error-code on failure.

Comment
By APIC systems the interrupts are generated using the IPI mechanism.

11.11.2024 Page 55/182

6.10.9 vmfInterruptEoi

UINT32 vmfInterruptEoi (
 UINT32 dwInterruptId,
);

Parameter
dwInterruptId
 [in] interrupt id.

Return
RTE_SUCCESS on success and an error-code on failure.

Comment
–

6.10.10 vmfInterruptIsr
Forward SharedCore interrupts.

UINT32 vmfInterruptIsr (
 UINT32 dwInterruptVector
);

Parameter
dwInterruptVector
 [in] interrupt vector of the interrupt to be handled.

Return
RTE_SUCCESS on success and an error-code on failure.

Comment
This routine is currently used by Windows only.

11.11.2024 Page 56/182

6.10.11 How to generate an IPI
This example shows what steps are required to generate a virtual interrupt or an IPI.

6.10.11.1 Device configuration

To generate an IPI a virtual device has to be created.
The following virtual device configuration shows how this can be achieved. The name of the virtual
device is “RTOS IPI Device”.
The section [Device#] defines the name and properties of the device. It refers to one or multiple
interrupts the device can generate.
The section [InterruptSource#] defines the properties of one specific interrupt source (related to one
device).
The section [InterruptTarget#] defines the target properties of one specific interrupt source (e.g. the
which CPU cores will be interrupted.
In the following example the entry [Device5] defines the properties for a virtual device representing an
IPI. The interrupt source and target properties for this virtual device are stored in the sections
[InterruptSource5] and [InterruptTarget5].

[Device5]

 "RtosDeviceType"=dword:1 ; 01 = virtual device

 "RtosDeviceName"="RTOS IPI Device" ; name of the virtual device

 "OsId"=dword:FFFFFFFE ; 0xFFFFFFFE = autodetect

 "InterruptSourceList"=multi_sz:"5" ; refers to [InterruptSource5]

[InterruptSource5]

 "InterruptSourceType"=dword:3 ; 03 = IPI interrupt

 "InterruptTargetList"=multi_sz:"5" ; refers to [InterruptTarget5]

 "InterruptId"=dword:FFFFFFFE ; generate irq id automatically

[InterruptTarget5]

 "InterruptTargetAddressType"=dword:0 ; 0: target address = bit mask of

 ; CPUs receiving this IPI

 "InterruptTargetAddress"=dword:6 ; Binary 0110 = processor 1 and 2

 "InterruptProcessorVector"=dword:FC ; interrupt vector

6.10.11.2 Determine the interrupt ID

The following call will determine the interrupt ID:
vmfDeviceInterruptIdFromName(“RTOS IPI Device”, 0, &dwInterruptId);

6.10.11.3 Generate the IPI (not yet available, has to be done manually by programming the
Local APIC)

The following call will generate the IPI:
vmfInterruptGenerate(dwInterruptId,…);

11.11.2024 Page 57/182

6.10.12 How to handle interrupts
This example shows what steps are required to handle interrupts.

6.10.12.1 Determine the interrupt ID

For PCI devices the interrupt id can be determined by reading the appropriate entry in the PCI
configuration space.
For other devices (e.g. ISA bus devices, legacy devices like the serial interface) and for IPIs the
interrupt id has to be determined by the following call:
vmfDeviceInterruptIdFromName(“RTOS IPI Device”, 0, &dwInterruptId);

6.10.12.2 Connect the interrupt service routine

In the first step the interrupt vector has to be determined.
vmfInterruptIdToVector(dwInterruptId, &dwInterruptVector)

Then the appropriate RTOS operating system function has to be called to connect the interrupt service
routine with the interrupt vector.
intConnect(dwInterruptVector,pfInterruptHandler)

The interrupt has to be enabled:
vmfInterruptEnable(dwInterruptId,…)

When the interrupt is generated the interrupt handle will be called. The last step in the interrupt
handler is to call the end-of-interrupt function:
vmfInterruptEoi(dwInterruptId)

11.11.2024 Page 58/182

6.11 Timer

The Virtual Machine Framework supports two virtual timers which are based on one single physical
hardware timer (typically the Local Apic timer on APIC systems). The physical hardware timer shall not
be directly used by the RTOS (the output frequency cannot be directly set, it will be set by the VMF to
an unspecified value depending on the output frequency of the virtual timers and the maximum output
frequency of the physical timer).
Note: the physical timer has to be enabled as soon as possible. In later versions of the VMF it may be
internally used by the VMF itself.

Synchronization notes:
The timer functions use shared informations and their calls must be synchronized against themselves
and against each other. The vmfTimerHwIsr function must not be synchronized.

6.11.1 Physical timer initialization
Prior to using the two virtual timers the following steps for the physical timer have to be made:

• Set the minimum and maximum timer output frequency (timer interrupt frequency). If these
values are not set some default values will be used.
– vmfTimerHwSetOutputFreqMin(dwFrequency)
– vmfTimerHwSetOutputFreqMax(dwFrequency)

• A RTOS interrupt service routine for the physical timer has to be connected to the physical
timer interrupt. This routine has to call the framework’s physical timer interrupt service routine.
– vmfTimerHwGetInterruptId(&dwVmfTimerHwInterruptId)
– vmfInterruptIdToVector(dwVmfTimerHwInterruptId, &dwTimerHwVector)
– rtosBspIntConnect (dwTimerHwVector, rtosBspTimerHwIsr, 0);
– rtosBspTimerHwIsr():call vmfTimerHwIsr(dwVmfTimerHwInterruptId)

• The interrupt shall be enabled using the appropriate RTOS function
– rtosBspIntEnablePIC(dwVmfTimerHwInterruptId)

• The physical timer has to be started
– vmfTimerHwEnable()

6.11.2 Virtual timer operation
The following steps are required to use the virtual timer 0 - the usage of virtual timer 1 is identical:

• Set the minimum and maximum timer output frequency (timer interrupt frequency). If these
values are not set some default values will be used.
– vmfTimer0SetOutputFreqMin(dwFrequency)
– vmfTimer0SetOutputFreqMax(dwFrequency)

• A RTOS interrupt service routine for the physical timer has to be connected to the physical
timer interrupt. This routine has to call the framework’s physical timer interrupt service routine.
– vmfTimer0GetInterruptId(&dwVmfTimer0InterruptId)
– vmfInterruptIdToVector(dwVmfTimer0InterruptId, &dwTimer0Vector)
– rtosBspIntConnect (dwTimer0Vector, rtosTimer0Isr, 0);

• The timer output frequency has to be set to an appropriate value:
– vmfTimer0SetOutputFreq(1000);

• The interrupt shall be enabled using the appropriate RTOS function
– rtosBspIntEnablePIC(dwVmfTimer0InterruptId)

• The physical timer has to be started
– vmfTimer0Enable()

11.11.2024 Page 59/182

6.11.3 Virtual timer output frequency adjustment
While the virtual timers are running it is possible to adjust the timer’s output frequency “on-the-fly”
without disabling the timer and setting a new output frequency.
As both virtual timers are based on the same physical timer these timers can neither be adjusted with
arbitrary values nor be adjusted independently from each other.

The following example shall show the relationship between the virtual timers:
Basic timer settings:

• Physical timer input frequency = 1.000.000 Hz

• Virtual timer 0 output frequency = 1000 Hz (e.g. required for the RTOS timer)

• Virtual timer 1 output frequency = 10.000 Hz (e.g. required for high-speed controller)
As a result the physical timer’s output frequency will be set to 10.000 Hz.
The initial count of the physical timer will be set to a value of 100.
After every physical timer interrupt one virtual timer 1 interrupt will be generated.
After 10 physical timer interrupts one virtual timer 0 interrupt will be generated.

The physical timer input period is 1 microsecond. If the initial count of the physical timer is changed by
1 the output period will be changed by 1 microsecond.

The period of the virtual timer 0 is 10 times higher than the physical timer’s period.
The period of the virtual timer 0 therefore can only be adjusted by 10 microseconds.
The granularity of timer 0 is 10.

The period of the virtual timer 1 is identical to the physical timer’s period.
The period of the virtual timer 1 therefore can be adjusted by 1 microsecond.
The granularity of timer 1 is 1.

6.11.4 Physical timer frequency
As described in chapter 6.8.3 the physical timer’s frequency depends on the settings for the virtual
timers.
Therefore the calling sequence should be as follows:

A) set the timer output frequency of the virtual timer 0, vmfTimer0SetOutputFreq
B) set the timer output frequency of the virtual timer 1, vmfTimer1SetOutputFreq
C) Enable the physical timer, vmfTimerHwEnable

As result the physical timer will immediately use the appropriate frequency according to the
requirements of the two virtual timers.

Important: If only one single virtual timer is used, the frequency of the other virtual timer should be set
to the same frequency!

11.11.2024 Page 60/182

6.11.5 vmfTimerHwIsr
Interrupt service routine for the physical timer.

UINT32 vmfTimerHwIsr(
 UINT32 dwInterruptId
);

Parameter
dwInterruptId
 [in] interrupt ID of the generated interrupt.

Return
RTE_SUCCESS on success and an error-code on failure.

Comment
– This function should be assigned to the interrupt ID using the standard interrupt handling function of
the RTOS before calling vmfTimerHwEnable().

6.11.6 vmfTimerHwGetInterruptId
Determine the interrupt ID of the physical timer.

UINT32 vmfTimerHwGetInterruptId(
 UINT32* pdwInterruptId
);

Parameter
pdwInterruptId
 [out] pointer to the variable receiving the imterrupt ID.

Return
RTE_SUCCESS on success and an error-code on failure.

Comment
–

6.11.7 vmfTimerHwEnable
Enable the physical timer.

UINT32 vmfTimerHwEnable(
);

Parameter
–

Return
RTE_SUCCESS on success and an error-code on failure.

Comment
This function has to be called as soon as possible after the initialization of the VMF. The physical timer
may generate interrupts after this function is called.
The output frequency of the virtual timers should be set prior to enabling the physical timer (see also
chapter 6.8.4).

11.11.2024 Page 61/182

6.11.8 vmfTimerHwDisable
Disable the physical timer.

UINT32 vmfTimerHwDisable(
);

Parameter
–

Return
RTE_SUCCESS on success and an error-code on failure.

Comment
–

6.11.9 vmfTimerHwGetInputFreq
Determine the input frequency of the physical timer.

UINT32 vmfTimerHwGetInputFreq(
 UINT32* pdwInputFreqHz
);

Parameter
pdwInputFreqHz
 [out] Physical timer input frequency in Hertz.

Return
RTE_SUCCESS on success and an error-code on failure.

Comment
–

6.11.10 vmfTimerHwGetInitialCount
Determine the initial counter value of the physical timer.

UINT32 vmfTimerHwGetInitialCount(
 UINT32* pdwInitialCount
);

Parameter
pdwInitialCount
 [out] Physical timer initial counter value.

Return
RTE_SUCCESS on success and an error-code on failure.

Comment
–

11.11.2024 Page 62/182

6.11.11 vmfTimerHwSetInitialCount
Sets the initial counter value of the physical timer.

UINT32 vmfTimerHwSetInitialCount(
 UINT32 dwInitialCount,
);

Parameter
dwInitialCount
 [in]

Return
RTE_SUCCESS on success and an error-code on failure.

Comment
–

6.11.12 vmfTimerHwModifyInitialCount
Modify the hardware timer initial count value.

UINT32 vmfTimerXModifyInitialCount (
 INT32 nDelta,
);

Parameter
nDelta
 [in] this value will be added on top of the timer’s current initial count value.

Return
RTE_SUCCESS on success and an error-code on failure.

Comment
The first call to this function enables the controlled mode for the hardware timer. The controlled mode
is disabled after a call with the delta parameter set to zero.
In the controlled mode, the initial counter is set every interrupt to a corrected value compensing the
interrupt jitter. The function vmfTimerHwGetInitialCount returns always the currently loaded initial
count.

6.11.13 vmfTimerHwGetCurrentCount
Determine the current counter value of the physical timer.

UINT32 vmfTimerHwGetCurrentCount(
 UINT32* pdwCurrentCount
);

Parameter
pdwCurrentCount
 [out] Physical timer current counter value.

Return
RTE_SUCCESS on success and an error-code on failure.

Comment
–

11.11.2024 Page 63/182

6.11.14 vmfTimerHwGetCurrentPosition
Determine the current position between the last and the next timer HW interrupt.

UINT32 vmfTimerHwGetCurrentPosition(
 UINT32* pdwCountSinceInterrupt,
 UINT32* pdwCountBeforeInterrupt
);

Parameter
pdwCountSinceInterrupt
 [out] Physical timer tick count since last interrupt.
pdwCountBeforeInterrupt
 [out] Physical timer tick count before next interrupt.

Return
RTE_SUCCESS on success and an error-code on failure.

Comment
–

6.11.15 vmfTimerHwGetOutputFreq
Get hardware timer output frequency.

UINT32 vmfTimerHwGetOutputFreq(
 UINT32* pdwOutputFreqHz
);

Parameter
pdwOutputFreqHz
 [out] Physical timer output frequency in Hertz.

Return
RTE_SUCCESS on success and an error-code on failure.

Comment
–

11.11.2024 Page 64/182

6.11.16 vmfTimerHwSetOutputFreqMin
Set minimal hardware timer output frequency.

UINT32 vmfTimerHwSetOutputFreqMin(
 UINT32 dwFrequencyHz
);

Parameter
dwFrequencyHz
 [in] the timer’s minimal output frequency in Hertz.

Return
RTE_SUCCESS on success and an error-code on failure.

Comment
–

6.11.17 vmfTimerHwGetOutputFreqMin
Get minimal hardware timer output frequency.

UINT32 vmfTimerHwGetOutputFreqMin(
 UINT32* pdwOutputFreqMinHz
);

Parameter
pdwOutputFreqMinHz
 [out] Physical timer min. frequency in Hertz.

Return
RTE_SUCCESS on success and an error-code on failure.

Comment
–

6.11.18 vmfTimerHwSetOutputFreqMax
Set maximal hardware timer output frequency.

UINT32 vmfTimerHwSetOutputFreqMax(
 UINT32 dwFrequencyHz
);

Parameter
dwFrequencyHz
 [in] the timer’s maximal output frequency in Hertz.

Return
RTE_SUCCESS on success and an error-code on failure.

Comment
–

11.11.2024 Page 65/182

6.11.19 vmfTimerHwGetOutputFreqMax
Get maximal hardware timer output frequency.

UINT32 vmfTimerHwGetOutputFreqMax(
 UINT32* pdwOutputFreqMaxHz
);

Parameter
pdwOutputFreqMaxHz
 [out] Physical timer max. frequency in Hertz.

Return
RTE_SUCCESS on success and an error-code on failure.

Comment
–

6.11.20 vmfTimerVirtGetInterruptId
Determine the interrupt ID of the specified virtual timer.

UINT32 vmfTimerVirtGetInterruptId(
 INT32 nTimerVirtId,
 UINT32* pdwInterruptId
);

Parameter
nTimerVirtId
 [in] ID of the virtual timer to get the interrupt ID from.
pdwInterruptId
 [in] interrupt ID of the virtual timer.

Return
RTE_SUCCESS on success and an error-code on failure.

Comment
–

6.11.21 vmfTimerVirtSetOutputFreq

UINT32 vmfTimerVirtSetOutputFreq(
 INT32 nTimerVirtId,
 UINT32 dwFrequencyHz
);

Parameter
nTimerVirtId
 [in] ID of the virtual timer to set the output frequency.
dwFrequencyHz
 [in] desired frequency in Hertz.

Return
RTE_SUCCESS on success and an error-code on failure.

Comment
–

11.11.2024 Page 66/182

6.11.22 vmfTimerVirtGetOutputFreq

UINT32 vmfTimerVirtGetOutputFreq(
 INT32 nTimerVirtId,
 UINT32* pdwOutputFreqHz
);

Parameter
nTimerVirtId
 [in] ID of the virtual timer to set the output frequency.
pdwOutputFreqMaxHz
 [out] desired max output frequency in Hertz.

Return
RTE_SUCCESS on success and an error-code on failure.

Comment
–

6.11.23 vmfTimerVirtGetOutputFreqMin

UINT32 vmfTimerVirtGetOutputFreqMin(
 INT32 nTimerVirtId,
 UINT32* pdwOutputFreqMinHz
);

Parameter
nTimerVirtId
 [in] ID of the virtual timer to get the min output frequency from.
pdwOutputFreqMinHz
 [out] min output frequency in Hertz.

Return
RTE_SUCCESS on success and an error-code on failure.

Comment
–

6.11.24 vmfTimerVirtGetOutputFreqMax

UINT32 vmfTimerVirtGetOutputFreqMax(
 INT32 nTimerVirtId,
 UINT32* pdwOutputFreqMaxHz
);

Parameter
nTimerVirtId
 [in] ID of the virtual timer to get the maxvc output frequency from.
pdwOutputFreqMaxHz
 [out] max output frequency in Hertz.

Return
RTE_SUCCESS on success and an error-code on failure.

Comment
–

11.11.2024 Page 67/182

6.11.25 vmfTimerVirtSetOutputFreqMin

UINT32 vmfTimerVirtSetOutputFreqMin(
 INT32 nTimerVirtId,
 UINT32 dwFrequencyHz
);

Parameter
nTimerVirtId
 [in] ID of the virtual timer to set the min output frequency.
dwFrequencyHz
 [int] desired min output frequency in Hertz.

Return
RTE_SUCCESS on success and an error-code on failure.

Comment
–

6.11.26 vmfTimerVirtSetOutputFreqMax

UINT32 vmfTimerVirtSetOutputFreqMax(
 INT32 nTimerVirtId,
 UINT32 dwFrequencyHz
);

Parameter
nTimerVirtId
 [in] ID of the virtual timer to set the max output frequency.
dwFrequencyHz
 [int] desired max output frequency in Hertz.

Return
RTE_SUCCESS on success and an error-code on failure.

Comment
–

6.11.27 vmfTimerVirtGetInputFreq

UINT32 vmfTimerVirtGetInputFreq(
 INT32 nTimerVirtId,
 UINT32* pdwInputFreqHz
);

Parameter
nTimerVirtId
 [in] ID of the virtual timer to get the input frequency from.
pdwInputFreqHz
 [out] input frequency in Hertz.

Return
RTE_SUCCESS on success and an error-code on failure.

Comment
–

11.11.2024 Page 68/182

6.11.28 vmfTimerVirtGetInitialCount

UINT32 vmfTimerVirtGetInitialCount(
 INT32 nTimerVirtId,
 UINT32* pdwInitialCount
);

Parameter
nTimerVirtId
 [in] ID of the virtual timer to get initial count from.
pdwInitialCount
 [out] initial count.

Return
RTE_SUCCESS on success and an error-code on failure.

Comment
–

6.11.29 vmfTimerVirtGetCurrentCount

UINT32 vmfTimerVirtGetCurrentCount(
 INT32 nTimerVirtId,
 UINT32* pdwCurrentCount
);

Parameter
nTimerVirtId
 [in] ID of the virtual timer to get the current count from.
pdwCurrentCount
 [out] current count

Return
RTE_SUCCESS on success and an error-code on failure.

Comment
–

6.11.30 vmfTimerGetCpuFrequency
Gets Cpu Frequency

UINT32 vmfTimerGetCpuFrequency(
 UINT32* pdwCpuFrequencyMhz
);

Parameter
pdwCpuFrequencyMhz
 [out] Cpu frequency in MHz.

Return
RTE_SUCCESS on success and an error-code on failure.

Comment
–

11.11.2024 Page 69/182

6.11.31 vmfTimerVirtSetInterruptId

UINT32 vmfTimerVirtSetInterruptId(
 INT32 nTimerVirtId,
 UINT32 dwInterruptId
);

Parameter
nTimerVirtId
 [in] ID of the virtual timer to set the interrupt ID.
dwInterruptId
 [in] interrupt ID.

Return
RTE_SUCCESS on success and an error-code on failure.

Comment
–

6.11.32 vmfTimerVirtXxx

vmfTimer0Xxx
vmfTimer1Xxx

General virtual timer function call mechanism.

vmfTimerVirtXxx (
 UINT32 dwTimerId,
 …
);

Parameter
dwTimrId
 [in] virtual timer ID. Currently two timers are supported (id = 0 or 1).

vmfTimerVirtXxx(0,…) ➔ vmfTimer0Xxx(…)
vmfTimerVirtXxx(1,…) ➔ vmfTimer1Xxx(…)

6.11.33 vmfTimerXGetInterruptId
Get interrupt ID of specified virtual timer.

UINT32 vmfTimerXGetInterruptId (
 UINT32 &pdwInterruptId
);

Parameter
pdwInterruptId
 [out] Interrupt Id.

Return
RTE_SUCCESS on success and an error-code on failure.

Comment
–

11.11.2024 Page 70/182

6.11.34 vmfTimerXEnable
Enable the virtual timer.

UINT32 vmfTimerXEnable (
);

Parameter
–

Return
RTE_SUCCESS on success and an error-code on failure.

Comment
–

6.11.35 vmfTimerXDisable
Disable the virtual timer.

UINT32 vmfTimerXDisable (
);

Parameter
–

Return
RTE_SUCCESS on success and an error-code on failure.

Comment
–

6.11.36 vmfTimerXGetInputFreq
Determine the input frequency of the virtual timer.

UINT32 vmfTimerXGetInputFreq (
 UINT32* pdwInputFreqHz,
);

Parameter
pdwInputFreqHz
 [out] Input frequency (in Hz) of the timer.

Return
RTE_SUCCESS on success and an error-code on failure.

Comment
The timer’s output frequency is determined by taking the timer’s input frequency divided by the timer’s
initial count value: Fout = Fin / InitCount.

11.11.2024 Page 71/182

6.11.37 vmfTimerXSetOutputFreq
Set the virtual timer output frequency.

UINT32 vmfTimerXSetOutputFreq (
 UINT32 dwFrequencyHz,
);

Parameter
dwFrequencyHz
 [in] the timer’s output frequency in Hertz. Within one second dwFrequency timer interrupts

will be generated.

Return
RTE_SUCCESS on success and an error-code on failure.

Comment
Important: if only one virtual timer is used the output frequency of the second virtual timer should be
set to the same value (see also chapter 6.8.4).

6.11.38 vmfTimerXGetOutputFreq
Determine the output frequency of the virtual timer.

UINT32 vmfTimerXGetOutputFreq (
 UINT32* pdwOutputFreqHz,
);

Parameter
pdwOutputFreqHz
 [out] Output frequency (in Hz) of the timer.

Return
RTE_SUCCESS on success and an error-code on failure.

Comment
The timer’s output frequency is determined by taking the timer’s input frequency divided by the timer’s
initial count value: Fout = Fin / InitCount.

6.11.39 vmfTimerXSetOutputFreqMin
Set the min. virtual timer output frequency.

UINT32 vmfTimerXSetOutputFreqMin (
 UINT32 dwFrequencyHz
);

Parameter
dwFrequencyHz
 [in] the timer’s min. output frequency in Hertz. Within one second dwFrequency timer

interrupts will be generated.

Return
RTE_SUCCESS on success and an error-code on failure.

Comment
–

11.11.2024 Page 72/182

6.11.40 vmfTimerXGetOutputFreqMin
Determine the min. output frequency of the virtual timer.

UINT32 vmfTimerXGetOutputFreqMin (
 UINT32* pdwOutputFreqMinHz
);

Parameter
pdwOutputFreqMinHz
 [out] Min. output frequency (in Hz) of the timer.

Return
RTE_SUCCESS on success and an error-code on failure.

Comment
–

6.11.41 vmfTimerXSetOutputFreqMax
Set the max. virtual timer output frequency.

UINT32 vmfTimerXSetOutputFreqMax (
 UINT32 dwFrequencyHz
);

Parameter
dwFrequencyHz
 [in] the timer’s max. output frequency in Hertz. Within one second dwFrequency timer

interrupts will be generated.

Return
RTE_SUCCESS on success and an error-code on failure.

Comment
–

6.11.42 vmfTimerXGetOutputFreqMax
Determine the max. output frequency of the virtual timer.

UINT32 vmfTimerXGetOutputFreqMax (
 UINT32* pdwOutputFreqMaxHz
);

Parameter
pdwOutputFreqMaxHz
 [out] Max. output frequency (in Hz) of the timer.

Return
RTE_SUCCESS on success and an error-code on failure.

Comment
–

11.11.2024 Page 73/182

6.11.43 vmfTimerXGetInitialCount
Determine the initial counter value of the virtual timer.

UINT32 vmfTimerXGetInitialCount (
 UINT32* pdwInitialCount
);

Parameter
pdwInitialCount
 [out] Virtual timer initial counter value.

Return
RTE_SUCCESS on success and an error-code on failure.

Comment
The timer’s output frequency is determined by taking the timer’s input frequency divided by the timer’s
initial count value: Fout = Fin / InitCount.

6.11.44 vmfTimerXGetCurrentCount
Determine the current counter value of the virtual timer.

UINT32 vmfTimerXGetCurrentCount (
 UINT32* pdwCurrentCount
);

Parameter
pdwCurrentCount
 [out] Virtual timer current counter value.

Return
RTE_SUCCESS on success and an error-code on failure.

Comment
The virtual timer’s counter will be loaded with the initial counter value. The initial counter value can be
determined using the vmfTimerXGetInitialCount() function.
The will decrement the counter with the timer’s input frequency. The timer’s input frequency can be
determined using the vmfTimerXGetInputFrequency() function.

11.11.2024 Page 74/182

6.11.45 vmfTimerXGetGranularity
Determine the virtual timer divider granularity.

UINT32 vmfTimerXGetGranularity (
 UINT32* pdwGranularity
);

Parameter
pdwGranularity
 [out] Virtual timer divider granularity.

Return
RTE_SUCCESS on success and an error-code on failure.

Comment
The virtual timer’s counter will be loaded with the initial counter value. While the timer is enabled the
initial counter value can be modified by multiples of the timer’s granularity value using the
vmfTimerXModifyInitialCount() function.

6.11.46 vmfTimerXModifyInitialCount
Modify the virtual timer initial count value.

UINT32 vmfTimerXModifyInitialCount (
 INT32 nDelta
);

Parameter
nDelta
 [in] this value will be multiplied with the timer divider granularity and added on top of the

timer’s current initial count value.

Return
RTE_SUCCESS on success and an error-code on failure.

Comment
The virtual timer’s counter will be loaded with the initial counter value. While the timer is enabled the
initial counter value can be modified by multiples of the timer’s granularity value using the
vmfTimerXModifyInitialCount() function.
Both virtual timers are based on the same physical timer. Thus a modification of one of the timers will
change the behaviour of the second as well. The timers cannot be adjusted independently.

11.11.2024 Page 75/182

6.11.47 vmfTimerXIntEnable
Enables virtual timer interrupt of the specified virtual timer.

UINT32 vmfTimerXIntEnable (
);

Parameter
–

Return
RTE_SUCCESS on success and an error-code on failure.

Comment
–

6.11.48 vmfTimerXIntDisable
Disables virtual timer interrupt of the specified virtual timer.

UINT32 vmfTimerXIntDisable (
);

Parameter
–

Return
RTE_SUCCESS on success and an error-code on failure.

Comment
–

11.11.2024 Page 76/182

6.12 Realtime Clock

The Virtual Machine Framework provides a Software RTC. This Soft-RTC will be initialized once when
the RTOS is booted and then triggered by the physical hardware timer (see chapter 6.8). The
accuracy of the Soft-RTC depends on the accuracy of the physical hardware timer. If better accuracy
is required the RTOS Library’s time and date synchronization has to be activated (see chapter 8).

Synchronization notes:
The realtime clock functions use shared informations and their calls must be synchronized against
themselves and against each other.

6.12.1 vmfRtcGetTime

UINT32 vmfRtcGetTime (
 VMF_TIME* pTime
);

Parameter
pTime
 [in,out] pointer to structure where new system time is stored.

Return
RTE_SUCCESS on success and an error-code on failure.

Comment
The Soft-RTC internally uses a simple counter value that is incremented every time the physical timer
generates an interrupt. On each call to vmfRtcGetTime() the real-time date is computed out of this
counter value. This computation only works correctly if the time between two calls does not exceed
one day (24 hours). Thus, the application has to call vmfRtcGetTime() at least one time per day.

6.12.2 vmfRtcSetTime

UINT32 vmfRtcSetTime (
 VMF_TIME* pTime
);

Parameter
pTime
 [in] pointer to structure with new system time to set.

Return
RTE_SUCCESS on success and an error-code on failure.

Comment
–

6.12.3 vmfRtcSetAlarm
Not implemented at the moment.

UINT32 vmfRtcSetAlarm (
 VMF_TIME* pTime
);

11.11.2024 Page 77/182

Parameter
pTime
 [in]

Return
RTE_SUCCESS on success and an error-code on failure.

Comment
–

6.12.4 vmfRtcSetReference
Not implemented at the moment.

UINT32 vmfRtcSetReference (
 VMF_STAMPED_TIME* pStampedTime
);

Parameter
pStampedTime
 [in]

Return
RTE_SUCCESS on success and an error-code on failure.

Comment
–

11.11.2024 Page 78/182

6.13 Configuration

6.13.1 vmfConfigGetFirstValueA

UINT32 vmfConfigGetFirstValueA (
 CHAR* szKeyName,
 CHAR* szValueName,
 UINT32* pdwType,
 UINT8* pbyData,
 UINT32* pdwSize,
 VMF_CONFIG_ADDDATA* pAddData
);

Parameter
szKeyName
 [in] (ascii) requested section in the RTOS configuration area.
szValueName
 [in] (ascii) requested key in the RTOS configuration area.
pdwType
 [in] data type, the following data types are defined

VMF_CONFIG_SZ_TYPE: zero terminated string
VMF_CONFIG_DWORD_TYPE: unsigned 32 bit integer value

pbyData
 [out] pointer to buffer where the configuration value will be stored.
pdwSize
 [in,out] the caller of this function has to store the size of the output buffer where pbyData

 in *pdwSize, the function will set the value of *pdwSize to the actual number of
 bytes copied into pbyData.

pAddData
 [out] Additional configuration data error information.

pAddData->dwLineNr: line number where the error occurred
pAddData->dwErrorCode: error code:
 REG_NO_ERROR – no error
 REG_INVALID_VALUENAME – syntax error in configuration value name
 REG_INVALID_KEYNAME – syntax error in configuration key name

Return
RTE_SUCCESS on success and an error-code on failure.

Comment
–

11.11.2024 Page 79/182

6.13.2 vmfConfigGetFirstValueW

UINT32 vmfConfigGetFirstValueW (
 WCHAR* wszKeyName,
 WCHAR* wszValueName,
 UINT32* pdwType,
 UINT8* pbyData,
 UINT32* pdwSize,
 VMF_CONFIG_ADDDATA* pAddData
);

Parameter
wszKeyName
 [in] (unicode) requested section in the RTOS configuration area.
wszValueName
 [in] (unicode) requested key in the RTOS configuration area.
pdwType
 [in] data type, the following data types are defined

VMF_CONFIG_SZ_TYPE: zero terminated string
VMF_CONFIG_DWORD_TYPE: unsigned 32 bit integer value

pbyData
 [out] pointer to buffer where the configuration value will be stored.
pdwSize
 [in,out] the caller of this function has to store the size of the output buffer where pbyData

 in *pdwSize, the function will set the value of *pdwSize to the actual number of
 bytes copied into pbyData.

pAddData
 [out] Additional configuration data error information.

pAddData->dwLineNr: line number where the error occurred
pAddData->dwErrorCode: error code:
 REG_NO_ERROR – no error
 REG_INVALID_VALUENAME – syntax error in configuration value name
 REG_INVALID_KEYNAME – syntax error in configuration key name

Return
RTE_SUCCESS on success and an error-code on failure.

Comment
–

11.11.2024 Page 80/182

6.13.3 vmfConfigGetNextValueA

UINT32 vmfConfigGetNextValueA (
 CHAR* szKeyName,
 CHAR* szValueName,
 UINT32* pdwType,
 UINT8* pbyData,
 UINT32* pdwSize,
 VMF_CONFIG_ADDDATA* pAddData
);

Parameter
szKeyName
 [in] (ascii) requested section in the RTOS configuration area.
szValueName
 [in] (ascii) requested key in the RTOS configuration area.
pdwType
 [in] data type, the following data types are defined

VMF_CONFIG_SZ_TYPE: zero terminated string
VMF_CONFIG_DWORD_TYPE: unsigned 32 bit integer value

pbyData
 [out] pointer to buffer where the configuration value will be stored.
pdwSize
 [in,out] the caller of this function has to store the size of the output buffer where pbyData

 in *pdwSize, the function will set the value of *pdwSize to the actual number of
 bytes copied into pbyData.

pAddData
 [out] Additional configuration data error information.

pAddData->dwLineNr: line number where the error occurred
pAddData->dwErrorCode: error code:
 REG_NO_ERROR – no error
 REG_INVALID_VALUENAME – syntax error in configuration value name
 REG_INVALID_KEYNAME – syntax error in configuration key name

Return
RTE_SUCCESS on success and an error-code on failure.

Comment
–

11.11.2024 Page 81/182

6.13.4 vmfConfigGetNextValueW

UINT32 vmfConfigGetNextValueW (
 WCHAR* wszKeyName,
 WCHAR* wszValueName,
 UINT32* pdwType,
 UINT8* pbyData,
 UINT32* pdwSize,
 VMF_CONFIG_ADDDATA* pAddData
);

Parameter
wszKeyName
 [in] (unicode) requested section in the RTOS configuration area.
wszValueName
 [in] (unicode) requested key in the RTOS configuration area.
pdwType
 [in] data type, the following data types are defined

VMF_CONFIG_SZ_TYPE: zero terminated string
VMF_CONFIG_DWORD_TYPE: unsigned 32 bit integer value

pbyData
 [out] pointer to buffer where the configuration value will be stored.
pdwSize
 [in,out] the caller of this function has to store the size of the output buffer where pbyData

 in *pdwSize, the function will set the value of *pdwSize to the actual number of
 bytes copied into pbyData.

pAddData
 [out] Additional configuration data error information.

pAddData->dwLineNr: line number where the error occurred
pAddData->dwErrorCode: error code:
 REG_NO_ERROR – no error
 REG_INVALID_VALUENAME – syntax error in configuration value name
 REG_INVALID_KEYNAME – syntax error in configuration key name

Return
RTE_SUCCESS on success and an error-code on failure.

Comment
–

11.11.2024 Page 82/182

6.13.5 vmfConfigQueryValueA
Determine the entry value of a requested section/key pair in the RTOS configuration area.

UINT32 vmfConfigQueryValueA (
 CHAR* szKeyName,
 CHAR* szValueName,
 UINT32 dwType,
 UINT8* pbyData,
 UINT32* pdwSize,
 VMF_CONFIG_ADDDATA* pAddData
);

Parameter
szKeyName
 [in] (ascii) requested section in the RTOS configuration area.
szValueName
 [in] (ascii) requested key in the RTOS configuration area.
dwType
 [in] data type, the following data types are defined

VMF_CONFIG_SZ_TYPE: zero terminated string
VMF_CONFIG_DWORD_TYPE: unsigned 32 bit integer value

pbyData
 [out] pointer to buffer where the configuration value will be stored.
pdwSize
 [in,out] the caller of this function has to store the size of the output buffer where pbyData

 in *pdwSize, the function will set the value of *pdwSize to the actual number of
 bytes copied into pbyData.

pAddData
 [out] Additional configuration data error information.

pAddData->dwLineNr: line number where the error occurred
pAddData->dwErrorCode: error code:
 REG_NO_ERROR – no error
 REG_INVALID_VALUENAME – syntax error in configuration value name
 REG_INVALID_KEYNAME – syntax error in configuration key name

{

Return
RTE_SUCCESS on success and an error-code on failure. Detailed error information can be found in
the pAddData variable.

Comment
–

11.11.2024 Page 83/182

6.13.6 vmfConfigQueryValueW
Determine the entry value of a requested section/key pair in the RTOS configuration area.

UINT32 vmfConfigQueryValueW (
 WCHAR* wszKeyName,
 WCHAR* wszValueName,
 UINT32 dwType,
 UINT8* pbyData,
 UINT32* pdwSize,
 VMF_CONFIG_ADDDATA* pAddData
);

Parameter
wszKeyName
 [in] (unicode) requested section in the RTOS configuration area.
wszValueName
 [in] (unicode) requested key in the RTOS configuration area.
dwType
 [in] data type, the following data types are defined

VMF_CONFIG_SZ_TYPE: zero terminated string
VMF_CONFIG_DWORD_TYPE: unsigned 32 bit integer value

pbyData
 [out] pointer to buffer where the configuration value will be stored.
pdwSize
 [in,out] the caller of this function has to store the size of the output buffer where pbyData

 in *pdwSize, the function will set the value of *pdwSize to the actual number of
 bytes copied into pbyData.

pAddData
 [out] Additional configuration data error information.

pAddData->dwLineNr: line number where the error occurred
pAddData->dwErrorCode: error code:
 REG_NO_ERROR – no error
 REG_INVALID_VALUENAME – syntax error in configuration value name
 REG_INVALID_KEYNAME – syntax error in configuration key name

{

Return
RTE_SUCCESS on success and an error-code on failure. Detailed error information can be found in
the pAddData variable.

Comment
–

11.11.2024 Page 84/182

6.14 Virtual Network: Network Packet Library

The virtual network packet library provides functions to transfer network data packets between
Windows and the RTOS.
An example implementation for VxWorks is provided in …\Examples\RtosVnet\VxWin.

Synchronization notes:
The virtual network functions use shared informations and their calls must be synchronized against
themselves and against each other.

6.14.1 Operation modes
The virtual network packet library may either operate in interrupt mode or in polling mode.
Polling Mode:
For the receiver part this means that the network driver cyclically has to check if new data packets are
received (no receive interrupts).
And for the sender part, after the network packet buffer is full the network driver has to check cyclically
if new data packets can be sent again (no send interrupts).
Interrupt Mode:
An interrupt will be generated if newly received packets are available. When sending network packets
it may happen that no send buffers are available. In that case an interrupt will be generated by the
counter part when at least one single buffer is available again.

6.14.2 Configuration
Two configuration settings are common for all operating systems. The polling period (in timer ticks)
and the MAC address of the virtual network adapter.
An RTOS may use an arbitrary configuration parameter but as a convention the following configuration
parameters shall be used (located in the RTOS configuration file)
[Rtos]
 "VnetMacAddress"="AA:BB:CC:DD:EE:02" ; MAC address of the vnet adapter
 "VnetPollPeriod"=dword:1 ; polling period in timer ticks
 ; (when set to 0: operation mode = interrupt)

These parameters can be determined using the vmfConfigQueryValue() function.
If the polling period is set to a value of 0, the network packet library will operate in interrupt mode,
otherwise it will operate in polling mode.

11.11.2024 Page 85/182

6.14.3 Initialization, De-Initialization
Prior to using any other vnet function the vmfVnetInit() routine has to be called.
When the driver shall be shut down, first vmfVnetDetach() has to be called to detach from the network.
Finally a call to vmfVnetDeinit() has to be executed.

6.14.3.1 vmfVnetInit

Initialize the virtual network packet library.

UINT32 vmfVnetInit (
 VOID* pvCoreDev,
 VMF_VNET_INIT_PARMS* poInitParms
);

Parameter
pvCoreDev
 [in] pointer to device descriptor where the device data will be stored. The vnet driver has to

provide a pointer to zero-initialized memory area. The size of the memory area is
VMF_VNET_DEVICE_SIZE.

poInitParms
 [in] pointer to initialization parameters

Return
RTE_SUCCESS on success and an error-code on failure.

Comment
The virtual network packet library will be initialized by calling this function. This function has to be called
prior to calling any other functions of the library.

VMF_VNET_INIT_PARMS
initialization parameters.

typedef struct _VMF_VNET_INIT_PARMS

{

 VOID* pvDrvContext;

 BOOL bMaster;

 VMF_VNET_PFN_GET_ACCESS pfnGetAccess;

 VMF_VNET_PFN_RELEASE_ACCESS pfnReleaseAccess;

 VMF_VNET_PFN_GET_SHM pfnGetShm;

 VMF_VNET_PFN_COPY_BLOCK_TO_BUF pfnCopyBlockToBuf;

 VMF_VNET_PFN_COPY_BUF_TO_BLOCK pfnCopyBufToBlock;

} VMF_PACKED(1) VMF_VNET_INIT_PARMS;

Description
pvDrvContext
 [in] Driver context. The network packet library does not evaluate this pointer. On several

callback functions this pointer will be returned to the driver.
bMaster
 [in] TRUE if the network peer is the virtual network master. As the Windows network peer is

the network master all RTOS have to set this value to FALSE.
pfnGetAccess
 [in] Pointer to a function that will be called to get access to shared resources. Typically this

function will take a mutex.
pfnReleaseAccess
 [in] Pointer to a function that will be called to release access to shared resources. Typically

this function will release a mutex.
pfnCopyBlockToBuf
 [in] Pointer to a function that copies an OS specific network packet data block (which

contains data to send) into a plain memory buffer located in the virtual network’s shared
memory area.

pfnCopyBufToBlock
 [in] Pointer to a function that copies network data from a plain memory buffer located in the

virtual network’s shared memory area (contains received data) into an OS specific
network packet data block.

11.11.2024 Page 86/182

6.14.3.2 vmfVnetMpGetInterruptId

Determine the interrupt id of the virtual network adapter.

UINT32 vmfVnetMpGetInterruptId (
 VMF_HANDLE hAdapter,
 UINT32* pdwInterruptId,
);

Parameter
hAdapter
 [in] adapter handle (0, if only peer-to-peer network is used).
pdwInterruptId
 [out] interrupt ID.

Return
RTE_SUCCESS on success and an error-code on failure.

Comment
If the virtual network adapter is operating in interrupt mode, then this function will return the appropriate
interrupt ID.

6.14.3.3 vmfVnetMpIntEnable

Enable interrupts.

UINT32 vmfVnetMpIntEnable (
 VMF_HANDLE hAdapter
);

Parameter
hAdapter
 [in] adapter handle (0, if only peer-to-peer network is used).

Return
RTE_SUCCESS on success and an error-code on failure.

Comment
If the virtual network adapter is operating in interrupt mode, then this function will enable interrupts.

6.14.3.4 vmfVnetMpIntDisable

Disable interrupts.

UINT32 vmfVnetMpIntDisable (
 VMF_HANDLE hAdapter
);

Parameter
hAdapter
 [in] adapter handle (0, if only peer-to-peer network is used).

Return
RTE_SUCCESS on success and an error-code on failure.

Comment
If the virtual network adapter is operating in interrupt mode, then this function will disable interrupts.

11.11.2024 Page 87/182

6.14.3.5 vmfVnetGetPacketSize

Determine the maximum size of a network data packet that can be stored in the virtual network’s
shared memory. Note: this function should not be called, it is deprecated.

UINT32 vmfVnetGetPacketSize(
 VOID* pvCoreDev,
 UINT32* pdwPacketSize,
);

Parameter
pvCoreDev
 [in] pointer to device descriptor.
pvBlock
 [out] maximum packet size.

Return
RTE_SUCCESS on success and an error-code on failure.

6.14.3.6 vmfVnetAttach

Attach to the shared memory network. Note: this function should not be called, it is deprecated.

UINT32 vmfVnetAttach (
 VOID* pvCoreDev,
 BOOL* pbAttached
);

Parameter
pvCoreDev
 [in] pointer to device descriptor.
pbAttached
 [out]

Return
RTE_SUCCESS on success and an error-code on failure.

Comment
–

6.14.3.7 vmfVnetDetach

Detach from the virtual network’s shared memory area. After calling vmfVnetDetach() the peer is not
available on the network. Note: this function should not be called, it is deprecated.

UINT32 vmfVnetDetach (
 VOID* pvCoreDev,
);

Parameter
pvCoreDev
 [in] pointer to device descriptor.

Return
RTE_SUCCESS on success and an error-code on failure.

Comment
After calling this function network packets cannot be received or sent any more.

11.11.2024 Page 88/182

6.14.3.8 vmfVnetCheckAnchor

Check the existence and validity of the network anchor. Note: this function should not be called, it is
deprecated.

UINT32 vmfVnetCheckAnchor (
 VOID* pvCoreDev,
);

Parameter
pvCoreDev
 [in] pointer to device descriptor.

Return
RTE_SUCCESS on success and an error-code on failure.

Comment
–

6.14.3.9 vmfVnetDynAttach

Dynamic network attach. Note: this function should not be called, it is deprecated.

UINT32 vmfVnetDynAttach (
 VOID* pvCoreDev,
 BOOL* pbAttached
);

Parameter
pvCoreDev
 [in] pointer to device descriptor.
pbAttached
 [out]

Return
RTE_SUCCESS on success and an error-code on failure.

Comment
–

11.11.2024 Page 89/182

6.14.3.10 vmfVnetIsAttached

Check if the network peer is attached. Note: this function should not be called, it is deprecated.

UINT32 vmfVnetIsAttached (
 VOID* pvCoreDev,
 BOOL* pbAttached
);

Parameter
pvCoreDev
 [in] pointer to device descriptor.
pbAttached
 [out]

Return
RTE_SUCCESS on success and an error-code on failure.

Comment
–

6.14.3.11 vmfVnetDeinit

De-Initialize the virtual network packet library.

UINT32 vmfVnetDeinit (
 VOID* pvCoreDev,
);

Parameter
pvCoreDev
 [in] pointer to device descriptor.

Return
RTE_SUCCESS on success and an error-code on failure.

Comment
After calling this function no network packet library function (except vmfVnetInit) can be called any more.

11.11.2024 Page 90/182

6.14.4 Heartbeat
Every network peer has to cyclically call a heartbeat function to signal a life sign. At least once every
500 milliseconds this function shall be called

6.14.4.1 vmfVnetHandleHearts

De-Initialize the virtual network packet library.

UINT32 vmfVnetHandleHearts (
 VOID* pvCoreDev,
);

Parameter
pvCoreDev
 [in] pointer to device descriptor.

Return
RTE_SUCCESS on success and an error-code on failure.

Comment
–

11.11.2024 Page 91/182

6.14.5 Receive network packets
The network packet library provides the following functions for the network driver receiver part.

– vmfVnetPacketsReceived():determine if new network packets are available
– vmfVnetRcv(): copy one received network packet into a network data packet block area
– vmfVnetRxFlush(): discard all currently received network packets

6.14.5.1 vmfVnetPacketsReceived

Determine if new network packets are available.

UINT32 vmfVnetPacketsReceived (
 VOID* pvCoreDev,
 BOOL* pbPacketsReceived,
);

Parameter
pvCoreDev
 [in] pointer to device descriptor.
pbPacketsReceived
 [out] pointer to flag signaling if new data are available (TRUE if available, FALSE if not)

Return
RTE_SUCCESS on success and an error-code on failure.

Comment
–

6.14.5.2 vmfVnetRcv

Copy the latest received network packet into a provided network data packet block area.

UINT32 vmfVnetRcv(
 VOID* pvCoreDev,
 VOID* pvBlock,
 INT32* pnLength,
);

Parameter
pvCoreDev
 [in] pointer to device descriptor.
pvBlock
 [out] pointer to network data packet block area where the received packet shall be stored.
pnLength
 [out] length of the data packet (byte)

Return
RTE_SUCCESS on success and an error-code on failure.

Comment
The callback function pfnCopyBufToBlock provided in vmfVnetInit() will be called by the network packet
library to copy the data into the network data packet block area.

11.11.2024 Page 92/182

6.14.5.3 vmfVnetRxFlush

Discard all currently received network packets.

UINT32 vmfVnetRxFlush(
 VOID* pvCoreDev,
);

Parameter
pvCoreDev
 [in] pointer to device descriptor.

Return
RTE_SUCCESS on success and an error-code on failure.

Comment
–

6.14.5.4 vmfVnetGetNumberOfPackets

Determine number of packets that can be stored internally. Note: this function should not be called, it
is deprecated.

UINT32 vmfVnetGetNumberOfPackets(
 VOID* pvCoreDev,
 UINT32* pdwNumberOfPackets
);

Parameter
pvCoreDev
 [in] pointer to device descriptor.
pdwNumberOfPackets
 [out]

Return
RTE_SUCCESS on success and an error-code on failure.

Comment
–

11.11.2024 Page 93/182

6.14.6 Send network packets
The network packet library provides the following functions for the network driver sender part.

– vmfVnetIsTxBlocked ():determine if new data can be sent (if a free send buffer available)
– vmfVnetSend(): send one single network data stored in a packet block area

6.14.6.1 vmfVnetIsTxBlocked

Determine if new network packets can be sent.

UINT32 vmfVnetIsTxBlocked (
 VOID* pvCoreDev,
 BOOL* pbIsTxBlocked,
);

Parameter
pvCoreDev
 [in] pointer to device descriptor.
pbIsTxBlocked
 [out] pointer to flag signaling if sending data is blocked (TRUE if sending data is blocked,

FALSE if sending data is possible)

Return
RTE_SUCCESS on success and an error-code on failure.

Comment
–

6.14.6.2 vmfVnetSend

Copy the latest received network packet into a provided network data packet block area.

UINT32 vmfVnetRcv(
 VOID* pvCoreDev,
 VOID* pvBlock,
);

Parameter
pvCoreDev
 [in] pointer to device descriptor.
pvBlock
 [out] pointer to network data packet block area which shall be sent.

Return
RTE_SUCCESS on success and an error-code on failure.

Comment
The callback function pfnCopyBlockToBuf provided in vmfVnetInit() will be called by the network packet
library to copy the data from the network data packet block area into the virtual network’s shared
memory.

11.11.2024 Page 94/182

6.14.6.3 vmfVnetMpSendFrame

UINT32 vmfVnetMpSendFrame(
 VMF_HANDLE hAdapter,
 UINT8* pbyFrame,
 UINT32 dwLength
);

Parameter
hAdapter
 [in] adapter handle (0, if only peer-to-peer network is used).
pbyFrame
 [in]
dwLength
 [in]

Return
RTE_SUCCESS on success and an error-code on failure.

Comment
–

6.14.6.4 vmfVnetMpSendFrameComplete

UINT32 vmfVnetMpSendFrameComplete(
 VMF_HANDLE hAdapter,
);

Parameter
hAdapter
 [in] adapter handle (0, if only peer-to-peer network is used).

Return
RTE_SUCCESS on success and an error-code on failure.

Comment
–

6.14.6.5 vmfVnetMpReceiveFrame

UINT32 vmfVnetMpReceiveFrame(
 VMF_HANDLE hAdapter,
 UINT8* pbyFrame,
 UINT32* pdwLength
);

Parameter
hAdapter
 [in] adapter handle (0, if only peer-to-peer network is used).
pbyFrame
 [in]
dwLength
 [out]

11.11.2024 Page 95/182

Return
RTE_SUCCESS on success and an error-code on failure.

Comment
–

6.14.6.6 vmfVnetMpReceiveFrameComplete

UINT32 vmfVnetMpReceiveFrameComplete(
 VMF_HANDLE hAdapter,
);

Parameter
hAdapter
 [in] adapter handle (0, if only peer-to-peer network is used).

Return
RTE_SUCCESS on success and an error-code on failure.

Comment
–

6.14.6.7 vmfVnetMpInitA

UINT32 vmfVnetMpInitA(
 CHAR* tszDeviceName,
 VMF_HANDLE* phAdapter
);

Parameter
tszDeviceName
 [in]
hAdapter
 [in] adapter handle (0, if only peer-to-peer network is used).

Return
RTE_SUCCESS on success and an error-code on failure.

Comment
–

11.11.2024 Page 96/182

6.14.6.8 vmfVnetMpInitW

UINT32 vmfVnetMpInitW(
 WCHAR* tszDeviceName,
 VMF_HANDLE* phAdapter
);

Parameter
tszDeviceName
 [in]
hAdapter
 [in] adapter handle (0, if only peer-to-peer network is used).

Return
RTE_SUCCESS on success and an error-code on failure.

Comment
–

11.11.2024 Page 97/182

6.15 I/O port access

6.15.1 vmfInByte

UINT8 vmfInByte (
 UINT32 dwIoPort
);

Parameter
dwIoPort
 [in]

Return

Comment
–

6.15.2 vmfOutByte

UINT8 vmfOutByte (
 UINT32 dwIoPort,
 UINT8 byValue
);

Parameter
dwIoPort
 [in]
byValue
 [in]

Return

Comment
–

6.15.3 vmfInWord

UINT16 vmfInWord (
 UINT32 dwIoPort
);

Parameter
dwIoPort
 [in]

Return

Comment
–

11.11.2024 Page 98/182

6.15.4 vmfOutWord

UINT16 vmfOutWord (
 UINT32 dwIoPort,
 UINT16 wValue
);

Parameter
dwIoPort
 [in]
wValue
 [in]

Return

Comment
–

6.15.5 vmfInDword

UINT32 vmfInDword (
 UINT32 dwIoPort
);

Parameter
dwIoPort
 [in]

Return

Comment
–

6.15.6 vmfOutDword

UINT32 vmfInDword (
 UINT32 dwIoPort,
 UINT32 dwValue
);

Parameter
dwIoPort
 [in]
dwValue
 [in]

Return

Comment
–

11.11.2024 Page 99/182

6.16 Basic Shared Memory Areas (deprecated)

6.16.1 vmfShmGetUserShmAddr
Gets start address of Multi Purpose Shared Memory with ID 0 (formerly UserShm).
This function is deprecated. Use “Multi Purpose Shared Memory Areas” instead.

UINT32 vmfShmGetUserShmAddr (
 UINT32* pdwShmAddr
);

Parameter
pdwhmAddr
 [in] Shared memory start address.

Return
RTE_SUCCESS on success and an error-code on failure.

Comment
–

6.16.2 vmfShmGetUserShmSize
Gets size of Multi Purpose Shared Memory with ID 0 (formerly UserShm).
This function is deprecated. Use “Multi Purpose Shared Memory Areas” instead.

UINT32 vmfShmGetUserShmSize (
 UINT32* pdwShmSize
);

Parameter
pdwShmSize
 [in] Shared memory size.

Return
RTE_SUCCESS on success and an error-code on failure.

Comment
–

6.16.3 vmfShmGetInternalShmAddr
Gets start address of internal shared memory.
This function is deprecated.

UINT32 vmfShmGetInternalShmAddr (
 UINT32* pdwInternalShmAddr
);

Parameter
pdwInternalShmAddr
 [in] Internal shared memory start address.

Return
RTE_SUCCESS on success and an error-code on failure.

Comment

11.11.2024 Page 100/182

–

6.16.4 vmfShmGetInternalShmSize
Gets size of internal shared memory.
This function is deprecated.

UINT32 vmfShmGetInternalShmSize (
 UINT32* pdwInternalShmSize
);

Parameter
pdwInternalShmSize
 [in] Internal shared memory size.

Return
RTE_SUCCESS on success and an error-code on failure.

Comment
–

11.11.2024 Page 101/182

6.17 Multi Purpose Shared Memory Areas

Multi purpose shared memory areas offer more possibilities compared with the basic shared memory
areas.
These areas are configured using the [SharedMemoryXx] sections in the configuration file.

[SharedMemory\MySharedMem] ; Shared Memory area

• "Name" (string)
Shared Memory Area name.

• “Description” (string)
Shared Memory Area description.

• “Base” (dword)
Physical base address. If set to a value of 0, then this shared memory area is allocated by
Windows and available for access within Windows.

• “Alignment” (dword)
If the “Base” parameter is set to 0 then this parameter determines the alignment of the
memory area,

• “Size” (dword)
Size of the shared memory area (in bytes).

• “Initialize” (dword)
0 → don’t initialize the shared memory area
1 → initialize the shared memory area with 0
2 → initialize the shared memory area with the content of a file
3 → initialize the shared memory area with 0 and then initialize with the content of a file

• “Save” (dword)
0 → don’t save the shared memory content when the RTOS is stopped
1 → store the shared memory content into a file when the RTOS is stopped

• “File” (string)
If “Initialize” is set to a value of 2, then this parameter determines the path and filename of the
file that shall be used to initialize the shared memory area. The file size must be less or equal
than the shared memory size.
If “Save” is set to a value of 1 the shared memory area is stored in the file determined by this
parameter.

• “AccessDefault” (dword)
Default access mode (bit mask) for all RTOS instances
0x01 → shared memory is present if bit 0 is set
0x02 → read only access if bit 1 is set
0x04 → uncached access if bit 2 is set
0x08 → code execution in shared memory is allowed if bit 4 is set
If the parameter is not set a value of 1 is assumed (present, cached, read/write access, code
execution not allowed).

[SharedMemory\MySharedMem\AccessModes] ; RTOS specific access mode definitions

• "0" (dword)
Specific access mode for the RTOS described in section [Rtos]. These values will override the
default values set by parameter “AccessDefault”

• "1" (dword)
Specific access mode for the RTOS described in section [Rtos1]. These values will override
the default values set by parameter “AccessDefault”

The shared memory area must not overlap with the RTOS memory area(s). It must be part of the
memory area reserved for the real-time part (parameters RteMemoryStartAddress and
RteMemorySize in section [Upload]).
Note: The section [SharedMemory0] must not be enabled. It is reserved for future use!

11.11.2024 Page 102/182

6.17.1 vmfShmGetInfo
Determine configuration for a given shared memory area.

UINT32 vmfShmGetInfo(
 UINT32 dwShmId
 VMF_SHM_INFO* pVmfShmInfo
);

Parameter
dwShmId
 [in] Id of the shared memory area (0 = user shm, 1/2/3 = enumerated according to

 configuration file (first [SharedMemory\...] entry will be ID 1, second will be ID 1.
pVmfShmInfo
 [out] Configuration info.

Return
RTE_SUCCESS on success and an error-code on failure.

Comment
The value for dwShmId is interpreted as follows:
0 → first enumerated entry in [SharedMemory\...]
1 → second enumerated entry in [SharedMemory\...]
…

VMF_SHM_INFO
Shared Memory information descriptor.

typedef struct _VMF_SHM_INFO

{

 UINT32 dwSize;

 CHAR tszName[VMF_SHM_MAX_NAME_SIZE];

 CHAR tszDescription[VMF_SHM_MAX_DESCRIPTION_SIZE];

 CHAR tszFilename[VMF_SHM_MAX_FILENAME_SIZE];

 UINT64 qwMemoryBasePhysical;

 UINT32 dwMemorySize;

 UINT32 dwInitialize;

 UINT32 dwSave;

 UINT32 dwAccessMode;

} VMF_PACKED(1) VMF_SHM_INFO;

Description
dwSize
 [in] Size of the VMF_SHM_INFO descriptor. This value has to be set by the caller.
tszName
 [out] Name of the shared memory area
tszDescription
 [out] Description of the shared memory area
tszFilename
 [out] File name
qwMemoryBasePhysical
 [out] Physical base address
qwMemorySize
 [out] Memory size in bytes
dwInitialize
 [out] Initialization setting (VMF_SHM_INITMODE_NOTHING, VMF_SHM_INITMODE_ZERO or

VMF_SHM_INITMODE_FILE)

dwSave
 [out] Save mode (VMF_SHM_SAVEMODE_NOTHING, VMF_SHM_SAVEMODE_FILE)

dwAccessMode
 [out] Access mode

11.11.2024 Page 103/182

6.18 Shared Events

Synchronization notes:
The shared event functions use shared informations and their calls must be synchronized against
themselves and against each other.
Starting with version 6.1.00.06 the formaly fixed total number of events (100) has changed to 500 per
default and can be modified using config file entry [Vmf] "EventCount".
Please refer to “RtosVM-UserManual.pdf” chapter “Section [Vmf]” for details.

6.18.1 vmfEventCreateA
Creates a new event with the specified name or increments the event handle counter if an event with
this name already exists.

UINT32 vmfEventCreateA (
 BOOL bManualReset,
 BOOL bInitialState,
 CHAR* szName,
 BOOL bUserEvent,
 VMF_HANDLE* phEvent,
);

Parameter
bManualReset

[in] unused
bInitialState
 [in] initial state of the OS event
szName
 [in] ascii name of the event to be created
bUserEvent
 [in] event will be user event or internal event
phEvent
 [out] handle of the event created, or NULL on failure.

Return
RTE_SUCCESS on success
RTE_BUSY_RECALL if function needs to be recalled after a sleep(1)
RTE_ERROR_xxx on failure.

Comment
–

6.18.2 vmfEventCreateW
Creates a new event with the specified name or increments the event handle counter if an event with
this name already exists.

UINT32 vmfEventCreateW (
 BOOL bManualReset,
 BOOL bInitialState,
 WCHAR* wszName,
 BOOL bUserEvent,
 VMF_HANDLE* phEvent,
);

Parameter
bManualReset

[in] unused

11.11.2024 Page 104/182

bInitialState
 [in] initial state of the OS event
wszName
 [in] unicode name of the event to be created
bUserEvent
 [in] event will be user event or internal event
phEvent
 [out] handle of the event created, or NULL on failure.

Return
RTE_SUCCESS on success
RTE_BUSY_RECALL if function needs to be recalled after a sleep(1)
RTE_ERROR_xxx on failure.

Comment
–

6.18.3 vmfEventOpenA
Increments the event handle counter of the event with this name.

UINT32 vmfEventOpenA (
 CHAR* szName,
 BOOL bUserEvent,
 VMF_HANDLE* phEvent
);

Parameter
szName
 [in] ascii name of the event to be opened
bUserEvent
 [in] event will be user event or internal event
phEvent
 [out] handle of the event created, or NULL on failure.

Return
RTE_SUCCESS on success
RTE_BUSY_RECALL if function needs to be recalled after a sleep(1)
RTE_ERROR_xxx on failure.

Comment
–

6.18.4 vmfEventOpenW
Increments the event handle counter of the event with this name.

UINT32 vmfEventOpenW (
 WCHAR* wszName,
 BOOL bUserEvent,
 VMF_HANDLE* phEvent
);

Parameter
wszName
 [in] unicode name of the event to be opened
bUserEvent
 [in] event will be user event or internal event
phEvent
 [out] handle of the event created, or NULL on failure.

11.11.2024 Page 105/182

Return
RTE_SUCCESS on success
RTE_BUSY_RECALL if function needs to be recalled after a sleep(1)
RTE_ERROR_xxx on failure.

Comment
–

6.18.5 vmfEventSet
Sets the specified event to signalled state.

UINT32 vmfEventSet (
 VMF_HANDLE hEvent,
 BOOL bUserEvent,
);

Parameter
hEvent
 [in] event handle.
bUserEvent
 [in] event is user event or internal event

Return
RTE_SUCCESS on success
RTE_BUSY_RECALL if function needs to be recalled after a sleep(1)
RTE_ERROR_xxx on failure.

Comment
–

6.18.6 vmfEventClose
Closes the specified event and decrements the event handle counter. If the last handle is closed, the
event is removed from the operating system.

UINT32 vmfEventClose (
 VMF_HANDLE hEvent,
 BOOL bUserEvent,
);

Parameter
hEvent
 [in] event handle.
bUserEvent
 [in] event is user event or internal event

Return
RTE_SUCCESS on success
RTE_BUSY_RECALL if function needs to be recalled after a sleep(1)
RTE_ERROR_xxx on failure.

Comment
–

6.18.7 vmfEventCommAttach

Has been renamed to “vmfEventReferenceAdd”.
A define replaces “vmfEventCommAttach” with “vmfEventReferenceAdd”.

11.11.2024 Page 106/182

6.18.8 vmfEventDelete

Has been renamed to “vmfEventReferenceRelease”.
A define replaces “vmfEventDelete” with “vmfEventReferenceRelease”.

6.18.9 vmfEventListGetLockFlagAddr

This function is deprecated. This function should not be used any more since locking is now internally
handled. Any use of this function will result in the use of a less performant compatibility mode.

6.18.10 vmfEventGetLockFlagAddr

This function is deprecated. This function should not be used any more since locking is now internally
handled. Any use of this function will result in the use of a less performant compatibility mode.

6.18.11 vmfEventGetNextJob
Searchs the event list for events with signalled state.

UINT32 vmfEventGetNextJob (
 UINT32* pdwJob,
 VMF_HANDLE* phEvent
);

Parameter
pdwJob
 [out] Processing job:
 DO_NOTHING
 DO_EVENT_CREATE
 DO_EVENT_SET
 DO_EVENT_RESET
 DO_EVENT_PULSE
 DO_EVENT_DELETE
phEvent
 [out] event handle of first event with signalled state

Return
RTE_SUCCESS on success
RTE_BUSY_RECALL if function needs to be recalled after a sleep(1)
RTE_ERROR_xxx on failure.

Comment
–

6.18.12 vmfEventJobDone
.

UINT32 vmfEventJobDone (
 UINT32 dwJob,
 VMF_HANDLE hEvent
);

Parameter
dwJob
 [in] -

11.11.2024 Page 107/182

hEvent
 [out] event handle.

Return
RTE_SUCCESS on success
RTE_BUSY_RECALL if function needs to be recalled after a sleep(1)
RTE_ERROR_xxx on failure.

Comment
–

6.18.13 vmfEventGetNameA

UINT32 vmfEventGetNameA (
 VMF_HANDLE hEvent,
 CHAR* szEventName
);

Parameter
hEvent
 [in] event handle.
szEventName
 [out] event name.

Return
RTE_SUCCESS on success
RTE_BUSY_RECALL if function needs to be recalled after a sleep(1)
RTE_ERROR_xxx on failure.

Comment
–

6.18.14 vmfEventGetNameW

UINT32 vmfEventGetNameW (
 VMF_HANDLE hEvent,
 WCHAR* szEventName
);

Parameter
hEvent
 [in] event handle.
wszEventName
 [out] event name.

Return
RTE_SUCCESS on success
RTE_BUSY_RECALL if function needs to be recalled after a sleep(1)
RTE_ERROR_xxx on failure.

Comment
–

6.18.15 vmfEventGetState

11.11.2024 Page 108/182

UINT32 vmfEventGetState (
 VMF_HANDLE hEvent,
 UINT32* pdwEventState
);

Parameter
hEvent
 [in] event handle.
pdwEventState
 [out] state of the event.

Return
RTE_SUCCESS on success and an error-code on failure.

Comment
–

6.18.16 vmfEventReferenceAdd
Increments the event handle counter.

UINT32 vmfEventReferenceAdd (
 VMF_HANDLE hEvent
);

Parameter
hEvent
 [in] event handle.

Return
RTE_SUCCESS on success
RTE_BUSY_RECALL if function needs to be recalled after a sleep(1)
RTE_ERROR_xxx on failure.

Comment
Since the event has to be locked the function can only be called between “vmfEventGetNextJob” and
“vmfEventJobDone”.

6.18.17 vmfEventReferenceRelease
Decrements the event handle counter. If the last handle is closed, the event descriptor is removed.

UINT32 vmfEventDelete (
 VMF_HANDLE hEvent
);

Parameter
hEvent
 [in] event handle.

Return
RTE_SUCCESS on success
RTE_BUSY_RECALL if function needs to be recalled after a sleep(1)
RTE_ERROR_xxx on failure.

Comment
Since the event has to be locked the function can only be called between “vmfEventGetNextJob” and
“vmfEventJobDone”.

11.11.2024 Page 109/182

6.18.18 vmfEventShowA
Show routine of the event handling.

UINT32 vmfEventShowA (
 VMF_PFN_PRINT_A pfnPrintA,
 INT32 nMode,
);

Parameter
pfnPrintA
 [in] function pointer to a ascii print function: INT32 function(const CHAR *szFormat, ...);
nMode
 [in] not specified or 0: only active events are printed out.
 otherwise : all event descriptors are printed out.

Return
RTE_SUCCESS on success and an error-code on failure.

Comment
–

6.18.19 vmfEventShowW
Show routine of the event handling.

UINT32 vmfEventShowW (
 VMF_PFN_PRINT_W pfnPrintW,
 INT32 nMode,
);

Parameter
pfnPrintW
 [in] function pointer to a unicode print function: INT32 function(const WCHAR *wszFormat,

...);
nMode
 [in] not specified or 0: only active events are printed out.
 otherwise : all event descriptors are printed out.

Return
RTE_SUCCESS on success and an error-code on failure.

Comment
–

11.11.2024 Page 110/182

6.19 Message Box

6.19.1 vmfMessageBoxExW
prepares data for a message Box.

UINT32 vmfMessageBoxExW (
 WCHAR* wszText,
 WCHAR* wszCaption,
 UINT32 dwType,
 UINT32* pdwUserReturnCode,
 VMF_PFN_SLEEP pfnSleep
);

Parameter
wszText
 [in] unicode string to be displayed in the message box
wszCaption
 [in] unicode string to be displayed as title of the message box.
dwType
 [in] type of appearance:
 VMF_MESSAGEBOX_OK
 VMF_MESSAGEBOX_OKCANCEL
 VMF_MESSAGEBOX_ABORTRETRYIGNORE
 VMF_MESSAGEBOX_YESNOCANCEL
 VMF_MESSAGEBOX_YESNO
 VMF_MESSAGEBOX_RETRYCANCEL
pdwUserReturnCode
 [out] Return code from user.
pfnSleep
 [in] function pointer to sleep function: INT32 function (INT32 nMilliSecs)

Return
RTE_SUCCESS on success and an error-code on failure.

Comment
–

6.19.2 vmfMessageBoxW
Same as vmfMessageBoxExW with pfnSleep = NULL.

6.19.3 vmfMessageBoxExA
Ascii version of function vmfMessageBoxExW.

6.19.4 vmfMessageBoxA
Ascii version of function vmfMessageBoxW.

11.11.2024 Page 111/182

6.19.5 vmfMessageBoxGetW
Query VMF for new data for displaying a message box.

UINT32 vmfMessageBoxGetW (
 VMF_MESSAGE_BOX_W* pVmfMessageBoxW
);

Parameter
pVmfMessageBoxW
 [out] pointer to a caller allocated structure for receiving message box data

Return
RTE_SUCCESS on success and an error-code on failure.

Comment
Deprecated – please use vmfMessageBoxExGetW() instead.

6.19.6 vmfMessageBoxGetA
Ascii version of function vmfMessageBoxGetW.

6.19.7 vmfMessageBoxExGetW
Query VMF for new data for displaying a message box.

UINT32 vmfMessageBoxGetW (
 VMF_MESSAGE_BOX_EX* pVmfMessageBoxEx
);

Parameter
pVmfMessageBoxEx
 [out] pointer to a caller allocated structure for receiving message box data

Return
RTE_SUCCESS on success
RTE_ERROR_NODATAEXCHANGEBUFFER if pVmfMessageBoxEx->dwDataSize is to small to
receive all data
RTE_ERROR_... on failure.

Comment
This function should be called by the VMF managing OS, typically from the RtosControl under
Windows.
The caller

- allocates a buffer with size =
sizeof(VMF_MESSAGE_BOX_EX) + DesiredNumberOfBytesForStrings

- assigns the buffer to a variable of type VMF_MESSAGE_BOX_EX*
- initializes →dwSize = sizeof(VMF_MESSAGE_BOX_EX)
- initializes →dwDataSize = DesiredNumberOfBytesForStrings
- calls vmfMessageBoxGetW()
- if returned RTE_ERROR_NODATAEXCHANGEBUFFER:

caller increases allocation and recalls the function
- if returned RTE_SUCCESS:

→bdwMsgValid is true if a new message was available. In this case
→aData[wCaptionOffset] contains the caption and →aData[wMessageOffset] is the text string.

See RtosLibMessageBox.c for an example implementation.

11.11.2024 Page 112/182

6.19.8 vmfMessageBoxExGetA
Ascii version of function vmfMessageBoxExGetW.

6.19.9 vmfMessageBoxShowA
Show routine of the message box.

UINT32 vmfMessageBoxShowA (
 VMF_PFN_PRINT_A pfnPrintA,
 INT32 nMode,
);

Parameter
pfnPrintA
 [in] function pointer to a ascii print function: INT32 function(const CHAR *szFormat, ...);
nMode
 [in] not specified or 0: only main information are printed out.
 otherwise : additional details are printed out.

Return
RTE_SUCCESS on success and an error-code on failure.

Comment
–

6.19.10 vmfMessageBoxShowW
Show routine of the message box.

UINT32 vmfMessageBoxShowW (
 VMF_PFN_PRINT_W pfnPrintW,
 INT32 nMode,
);

Parameter
pfnPrintW
 [in] function pointer to a unicode print function: INT32 function(const WCHAR *wszFormat,

...);
nMode
 [in] not specified or 0: only main information are printed out.
 otherwise : additional details are printed out.

Return
RTE_SUCCESS on success and an error-code on failure.

Comment
–

11.11.2024 Page 113/182

6.20 Configuration Show Routines

6.20.1 vmfRtosConfigShowA
Show routine of the rtos configuration.

UINT32 vmfRtosConfigShowA (
 VMF_PFN_PRINT_A pfnPrintA,
 INT32 nMode,
);

Parameter
pfnPrintA
 [in] function pointer to a ascii print function: INT32 function(const CHAR *szFormat, ...);
nMode
 [in] not specified or 0: only main information are printed out.
 otherwise : additional details are printed out.

Return
RTE_SUCCESS on success and an error-code on failure.

Comment
–

6.20.2 vmfRtosConfigShowW
Show routine of the rtos configuration.

UINT32 vmfRtosConfigShowW (
 VMF_PFN_PRINT_W pfnPrintW,
 INT32 nMode,
);

Parameter
pfnPrintW
 [in] function pointer to a unicode print function: INT32 function(const WCHAR *wszFormat,

...);
nMode
 [in] not specified or 0: only main information are printed out.
 otherwise : additional details are printed out.

Return
RTE_SUCCESS on success and an error-code on failure.

Comment
–

6.20.3 vmfProcessorConfigShowA
Show routine of the processor configuration.

UINT32 vmfProcessorConfigShowA (
 VMF_PFN_PRINT_A pfnPrintA,
 INT32 nMode,
);

Parameter

11.11.2024 Page 114/182

pfnPrintA
 [in] function pointer to a ascii print function: INT32 function(const CHAR *szFormat, ...);
nMode
 [in] not specified or 0: only main information are printed out.
 otherwise : additional details are printed out.

Return
RTE_SUCCESS on success and an error-code on failure.

Comment
–

6.20.4 vmfProcessorConfigShowW
Show routine of the processor configuration.

UINT32 vmfProcessorConfigShowW (
 VMF_PFN_PRINT_W pfnPrintW,
 INT32 nMode,
);

Parameter
pfnPrintW
 [in] function pointer to a unicode print function: INT32 function(const WCHAR *wszFormat,

...);
nMode
 [in] not specified or 0: only main information are printed out.
 otherwise : additional details are printed out.

Return
RTE_SUCCESS on success and an error-code on failure.

Comment
–

6.20.5 vmfIoApicConfigShowA
Show routine of the io-apic configuration.

UINT32 vmfIoApicConfigShowA (
 VMF_PFN_PRINT_A pfnPrintA,
 INT32 nMode,
);

Parameter
pfnPrintA
 [in] function pointer to a ascii print function: INT32 function(const CHAR *szFormat, ...);
nMode
 [in] not specified or 0: only main information are printed out.
 otherwise : additional details are printed out.

Return
RTE_SUCCESS on success and an error-code on failure.

Comment
–

11.11.2024 Page 115/182

6.20.6 vmfIoApicConfigShowW
Show routine of the io-apic configuration.

UINT32 vmIoApicConfigShowW (
 VMF_PFN_PRINT_W pfnPrintW,
 INT32 nMode,
);

Parameter
pfnPrintW
 [in] function pointer to a unicode print function: INT32 function(const WCHAR *wszFormat,

...);
nMode
 [in] not specified or 0: only main information are printed out.
 otherwise : additional details are printed out.

Return
RTE_SUCCESS on success and an error-code on failure.

Comment
–

6.20.7 vmfDeviceConfigShowA
Show routine of the device configuration.

UINT32 vmfDeviceConfigShowA (
 VMF_PFN_PRINT_A pfnPrintA,
 INT32 nMode,
);

Parameter
pfnPrintA
 [in] function pointer to a ascii print function: INT32 function(const CHAR *szFormat, ...);
nMode
 [in] not specified or 0: only main information are printed out.
 otherwise : additional details are printed out.

Return
RTE_SUCCESS on success and an error-code on failure.

Comment
–

11.11.2024 Page 116/182

6.20.8 vmfDeviceConfigShowW
Show routine of the device configuration.

UINT32 vmfDeviceConfigShowW (
 VMF_PFN_PRINT_W pfnPrintW,
 INT32 nMode,
);

Parameter
pfnPrintW
 [in] function pointer to a unicode print function: INT32 function(const WCHAR *wszFormat,

...);
nMode
 [in] not specified or 0: only main information are printed out.
 otherwise : additional details are printed out.

Return
RTE_SUCCESS on success and an error-code on failure.

Comment
–

11.11.2024 Page 117/182

6.21 Virtual I/O

The virtual I/O feature of the VMF provides a mechanism to transfer stream data between the
participants. Currently only a single channel is supported. Virtual I/O data are transferred between the
primary OS (POS) which usually is Windows and the secondary OS (SOS) which usually is the RTOS.

Synchronization notes:
The virtual IO functions use shared informations and their calls must be synchronized against
themselves and against each other.

6.21.1 vmfVioRead
Read data from virtual I/O channel.

UINT32 vmfVioRead (
 UINT32 dwChanId,
 BOOL bIsPOS,
 UINT8* pbyData,
 UINT32 dwMaxNumBytesToRead,
 UINT32* pdwNumBytesRead
);

Parameter
dwChanId
 [in] Channel ID (0, 1, …)
bIsPOS
 [in] Set to TRUE if called by the primary OS, FALSE if called by the secondary OS
pbyData
 [out] pointer to buffer where data shall be stored
dwMaxNumBytesToRead
 [in] size of the data buffer
pdwNumBytesRead
 [out] number of actually read bytes (0 if no bytes are available)

Return
RTE_SUCCESS on success and an error-code on failure.

Comment
In case there is no data available a call to this function immediately returns.

11.11.2024 Page 118/182

6.21.2 vmfVioWrite
Write data to virtual I/O channel.

UINT32 vmfVioWrite (
 UINT32 dwChanId,
 BOOL bIsPOS,
 UINT8* pbyData,
 UINT32 dwNumBytes,
 UINT32* pdwNumBytesWritten
);

Parameter
dwChanId
 [in] Channel ID (0, 1, …)
bIsPOS
 [in] Set to TRUE if called by the primary OS, FALSE if called by the secondary OS
pbyData
 [in] pointer to buffer where data is stored
dwNumBytes
 [in] number of bytes to write
pdwNumBytesWritten
 [out] number of bytes actually written (0 if no bytes are written)

Return
RTE_SUCCESS on success and an error-code on failure.

Comment
In case no data can be written a call to this function immediately returns.

11.11.2024 Page 119/182

6.22 Time stamping

6.22.1 vmfTimeStampGetFrequency

UINT32 vmfTimeStampGetFrequency (
 UINT32 dwSourceId,
 UINT64* pqwFrequency
);

Parameter
dwSourceId
 [in] Time stamp source; should be VMF_TIMESTAMP_SOURCE_ID_AUTO

pqwFrequency
 [out] Frequency in Hz

Return
RTE_SUCCESS on success and an error-code on failure.

Comment
The timestamp source is determined automatically. On default the processor’s timestamp counter will
be used. The automatic determination can be overridden by a config file entry:
[Rtos\Vmf] "TimeStampSourceAuto"=dword:1 ; value see VMF_TIMESTAMP_SOURCE_ID_xxx

6.22.2 vmfTimeStampGetValue

UINT32 vmfTimeStampGetValue (
 UINT32 dwSourceId,
 UINT64* pqwValue
);

Parameter
dwSourceId
 [in] Time stamp source; should be VMF_TIMESTAMP_SOURCE_ID_AUTO

pqwValue
 [out] Time stamp value

Return
RTE_SUCCESS on success and an error-code on failure.

Comment
The timestamp source is determined automatically. On default the processor’s timestamp counter will
be used. The automatic determination can be overridden by a config file entry:
[Rtos\Vmf] "TimeStampSourceAuto"=dword:1 ; value see VMF_TIMESTAMP_SOURCE_ID_xxx
Please call vmfTimestampGetMaxValue to determine when the timestamp will wrap.

11.11.2024 Page 120/182

6.22.3 vmfTimeStampGetMaxValue
This function returns the max value before the timestamp wraps

UINT32 vmfTimeStampGetMaxValue (
 UINT32 dwSourceId,
 UINT64* pqwMaxValue
);

Parameter
dwSourceId
 [in] Time stamp source; should be VMF_TIMESTAMP_SOURCE_ID_AUTO

pqwMaxValue
 [out] Time stamp max value before wrap

Return
RTE_SUCCESS on success and an error-code on failure.

Comment
The timestamp source is determined automatically. On default the processor’s timestamp counter will
be used. The automatic determination can be overridden by a config file entry:
[Rtos\Vmf] "TimeStampSourceAuto"=dword:1 ; value see VMF_TIMESTAMP_SOURCE_ID_xxx

11.11.2024 Page 121/182

6.23 Performance Measurement

Synchronization notes:
The functions vmfPerformanceStart and vmfPerformanceStop use shared informations and their calls
must be synchronized against themselves and against each other.

6.23.1 vmf PerformanceStart

UINT32 vmfPerformanceStart (
 UINT32 dwPerformanceId
);

Parameter
dwPerformanceId
 [in] Performance measurement to start

Return
RTE_SUCCESS on success and an error-code on failure.

Comment
- see vmfPerformanceGetData

6.23.2 vmfPerformanceReset

UINT32 vmfPerformanceReset (
 UINT32 dwPerformanceId
);

Parameter
dwPerformanceId
 [in] Performance measurement to reset

Return
RTE_SUCCESS on success and an error-code on failure.

Comment
- see vmfPerformanceGetData

6.23.3 vmfPerformanceStop

UINT32 vmfPerformanceStop (
 UINT32 dwPerformanceId
);

Parameter
dwPerformanceId
 [in] Performance measurement to stop

Return
RTE_SUCCESS on success and an error-code on failure.

Comment
- see vmfPerformanceGetData

11.11.2024 Page 122/182

6.23.4 vmfPerformanceGetData

UINT32 vmfPerformanceGetData (
 UINT32 dwPerformanceId,
 UINT32 dwOsId,
 UINT32 dwProcessorMask,
 VMF_PERFORMANCE_DATA* pPerformanceData,
);

Parameter
dwPerformanceId

[in] Performance measurement to get the data from

dwOsId

[in] OS to get the data from. VMF_OSID_THISOS can be used to query the data for the
calling OS.

dwProcessorMask

[in] Processor to get the data from

pPerformanceData

[out] Pointer to the VMF_PERFORMANCE_DATA structure to write to.

Return
RTE_SUCCESS on success and an error-code on failure.

Comment
- Following performance IDs can be used:

- VMF_PERFORMANCE_ID_TUNNEL:
qwCount member of the VMF_PERFORMANCE_DATA structure returns the number of time
the system switch into the selected OS since the measurement was started.
qwMin member of the VMF_ PERFORMANCE_DATA structure returns the minimum time
spent in the selected OS expressed in increments since the measurement was started.
qwMax member of the VMF_ PERFORMANCE_DATA structure returns the maximum time
spent in the selected OS expressed in increments since the measurement was started.
qwSum member of the VMF_ PERFORMANCE_DATA structure returns the total time spent
in the selected OS expressed in increments since the measurement was started.
dwAvg member of the VMF_ PERFORMANCE_DATA structure returns the average time
spent in the selected OS since the measurement was started.
qwConverter member of the VMF_ PERFORMANCE_DATA structure returns the frequency
in Hz of the increments.

11.11.2024 Page 123/182

6.24 Time Synchronisation

Synchronization notes:
The time synchronization functions use shared informations and their calls must be synchronized
against themselves and against each other.

6.24.1 vmfTimeSyncIsMaster

UINT32 vmfTimeSyncIsMaster (
 BOOL* pbIsMaster
);

Parameter
pbIsMaster
 [in]

Return
RTE_SUCCESS on success and an error-code on failure.

Comment
–

6.24.2 vmfTimeSyncGetMaster

UINT32 vmfTimeSyncGetMaster (
 UINT32* pdwMasterOsId
);

Parameter
pdwMasterOsId
 [in]

Return
RTE_SUCCESS on success and an error-code on failure.

Comment
–

6.24.3 vmfTimeSyncSetMaster

UINT32 vmfTimeSyncSetMaster (
 UINT32 dwMasterOsId
);

Parameter
dwMasterOsId
 [in]

Return
RTE_SUCCESS on success and an error-code on failure.

Comment
–

11.11.2024 Page 124/182

6.24.4 vmfTimeSyncDisable

UINT32 vmfTimeSyncDisable (
 VOID
);

Parameter
–

Return
RTE_SUCCESS on success and an error-code on failure.

Comment
–

6.24.5 vmfTimeSyncGetMasterTime

UINT32 vmfTimeSyncGetMasterTime (
 VMF_STAMPED_TIME* pVmfStampedTime,
 UINT32 dwTimeIndex
);

Parameter
pVmfStampedTime
 [out]
dwTimeIndex
 [in]

Return
RTE_SUCCESS on success and an error-code on failure.

Comment
–

6.24.6 vmfTimeSyncGetMasterTime2

UINT32 vmfTimeSyncGetMasterTime2 (
 VMF_STAMPED_TIME2* pVmfStampedTime
);

Parameter
pVmfStampedTime
 [out]

Return
RTE_SUCCESS on success and an error-code on failure.

Comment
–

11.11.2024 Page 125/182

6.24.7 vmfTimeSyncGetOsTime

UINT32 vmfTimeSyncGetOsTime (
 VMF_STAMPED_TIME* pVmfStampedTime,
 UINT32 dwOsId,
 UINT32 dwTimeIndex
);

Parameter
pVmfStampedTime
 [out]
dwOsId
 [in] VMF_OSID_THISOS can be used to query the time for the calling OS.
dwTimeIndex
 [in]

Return
RTE_SUCCESS on success and an error-code on failure.

Comment
–

6.24.8 vmfTimeSyncGetOsTime2

UINT32 vmfTimeSyncGetOsTime2 (
 VMF_STAMPED_TIME2* pVmfStampedTime,
 UINT32 dwOsId
);

Parameter
pVmfStampedTime
 [out]
dwOsId
 [in] VMF_OSID_THISOS can be used to query the time for the calling OS.

Return
RTE_SUCCESS on success and an error-code on failure.

Comment
–

11.11.2024 Page 126/182

6.24.9 vmfTimeSyncSetTime

UINT32 vmfTimeSyncSetTime (
 VMF_STAMPED_TIME* pVmfStampedTime,
 UINT32 dwTimeIndex
);

Parameter
pVmfStampedTime
 [in]
dwTimeIndex
 [in]

Return
RTE_SUCCESS on success and an error-code on failure.

Comment
–

6.24.10 vmfTimeSyncSetTime2

UINT32 vmfTimeSyncSetTime (
 VMF_STAMPED_TIME2* pVmfStampedTime,
);

Parameter
pVmfStampedTime
 [in]
dwTimeIndex
 [in]

Return
RTE_SUCCESS on success and an error-code on failure.

Comment
–

6.24.11 vmfTimeSyncShowA

UINT32 vmfTimeSyncShowA (
 VMF_PFN_PRINT_A pfnPrintA,
 INT32 nMode
);

Parameter
pfnPrintA
 [in] function pointer to a ascii print function: INT32 function(const CHAR *szFormat, ...);
nMode
 [in]

Return
RTE_SUCCESS on success and an error-code on failure.

Comment
–

11.11.2024 Page 127/182

6.24.12 vmfTimeSyncShowW

UINT32 vmfTimeSyncShowW (
 VMF_PFN_PRINT_W pfnPrintW,
 INT32 nMode
);

Parameter
pfnPrintA
 [in] function pointer to a unicode print function: INT32 function(const WCHAR *wszFormat,
nMode
 [in]

Return
RTE_SUCCESS on success and an error-code on failure.

Comment
–

11.11.2024 Page 128/182

6.24.13 vmfTimeSyncConvertTime

UINT32 vmfTimeSyncConvertTime (
 VMF_TIME* pVmfTime,
 UINT16 wYearValue
);

Parameter
pVmfTime
 [in]
wYearValue
 [in]

Return
RTE_SUCCESS on success and an error-code on failure.

Comment
–

6.24.14 vmfTimezoneSyncIsMaster

UINT32 vmfTimezoneSyncIsMaster (
 BOOL* pbIsMaster
);

Parameter
pbIsMaster
 [out]

Return
RTE_SUCCESS on success and an error-code on failure.

Comment
–

6.24.15 vmfTimezoneSyncGetMaster

UINT32 vmfTimezoneSyncGetMaster (
 UINT32* pdwMasterOsId
);

Parameter
pdwMasterOsId
 [out]

Return
RTE_SUCCESS on success and an error-code on failure.

Comment
–

11.11.2024 Page 129/182

6.24.16 vmfTimezoneSyncSetMaster

UINT32 vmfTimezoneSyncSetMaster (
 UINT32 dwMasterOsId
);

Parameter
dwMasterOsId
 [in]

Return
RTE_SUCCESS on success and an error-code on failure.

Comment
–

6.24.17 vmfTimezoneSyncDisable

UINT32 vmfTimezoneSyncDisable (
 VOID
);

Parameter
–

Return
RTE_SUCCESS on success and an error-code on failure.

Comment
–

6.24.18 vmfTimezoneSyncGetOsTimezoneA

UINT32 vmfTimezoneSyncGetOsTimezoneA (
 VMF_TIMEZONE_A* pVmfTimezoneA,
 UINT32 dwOsId
);

Parameter
pVmfTimezoneA
 [in]
dwOsId
 [in] VMF_OSID_THISOS can be used to query the timezone for the calling OS.

Return
RTE_SUCCESS on success and an error-code on failure.

Comment
–

11.11.2024 Page 130/182

6.24.19 vmfTimezoneSyncGetOsTimezoneW

UINT32 vmfTimezoneSyncGetOsTimezoneW (
 VMF_TIMEZONE_W* pVmfTimezoneA,
 UINT32 dwOsId
);

Parameter
pVmfTimezoneW
 [in]
dwOsId
 [in] VMF_OSID_THISOS can be used to query the timezone for the calling OS.

Return
RTE_SUCCESS on success and an error-code on failure.

Comment
–

6.24.20 vmfTimezoneSyncSetTimezoneA

UINT32 vmfTimezoneSyncSetTimezoneA (
 VMF_TIMEZONE_A* pVmfTimezoneA
);

Parameter
pVmfTimezoneA
 [in]
dwOsId
 [in]

Return
RTE_SUCCESS on success and an error-code on failure.

Comment
–

6.24.21 vmfTimezoneSyncSetTimezoneW

UINT32 vmfTimezoneSyncSetTimezoneW (
 VMF_TIMEZONE_A* pVmfTimezoneW
);

Parameter
pVmfTimezoneW
 [in]
dwOsId
 [in]

Return
RTE_SUCCESS on success and an error-code on failure.

Comment
–

11.11.2024 Page 131/182

6.24.22 vmfTimezoneSyncShowA

UINT32 vmfTimezoneSyncShowA (
 VMF_PFN_PRINT_A pfnPrintA,
 INT32 nMode
);

Parameter
pfnPrintA
 [in] function pointer to a ascii print function: INT32 function(const CHAR *szFormat, ...);
nMode
 [in]

Return
RTE_SUCCESS on success and an error-code on failure.

Comment
–

6.24.23 vmfTimezoneSyncShowW

UINT32 vmfTimezoneSyncShowW (
 VMF_PFN_PRINT_W pfnPrintW,
 INT32 nMode
);

Parameter
pfnPrintW
 [in] function pointer to a ascii print function: INT32 function(const CHAR *szFormat, ...);
nMode
 [in]

Return
RTE_SUCCESS on success and an error-code on failure.

Comment
–

11.11.2024 Page 132/182

6.25 Comm Task

6.25.1 vmfCommSignalStarted

UINT32 vmfCommSignalStarted (
 VOID
);

Parameter
–

Return
RTE_SUCCESS on success and an error-code on failure.

Comment
–

6.25.2 vmfCommIsStarted

UINT32 vmfCommIsStarted (
 UINT32 dwOsId,
 BOOL* pbCommIsStarted
);

Parameter
dwOsId

[in] ID of the OS to check if the communication sub-system is started.
VMF_OSID_THISOS can be used to query the state of the calling OS.

pbCommIsStarted
[out] TRUE if the communication sub-system of the OS is started.

Return
RTE_SUCCESS on success and an error-code on failure.

Comment
–

6.25.3 vmfCommGetLockFlagAddr

This function is deprecated. This function should not be used any more since locking is now internally
handled. Any use of this function will result in the use of a less performant compatibility mode.

11.11.2024 Page 133/182

6.25.4 vmfCommCreateProcess
Not implemented at the moment.

UINT32 vmfCommCreateProcess (
 UINT32 dwOsId,
 CHAR* szFilename,
 CHAR* szCmdLine,
 VMF_PFN_SLEEP pfnSleep
);

Parameter
dwOsId
 [in] Not implemented at the moment.
szFilename
 [in] Not implemented at the moment.
szCmdLine
 [in] Not implemented at the moment.
pfnSleep
 [in] Not implemented at the moment.

Return
RTE_SUCCESS on success and an error-code on failure.

Comment
–

6.25.5 vmfCommConfigGet
This function returns the configuration information required for Comm task.

UINT32 vmfCommConfigGet (
 UINT32 dwOsId,
 PVMF_COMM_CONFIG pCommConfig
);

Parameter
dwOsId

[in] The OS id whose config should be queried. VMF_OSID_THISOS can be used to
query the configuration for the calling OS.

pCommConfig
 [out] Comm configuration information

Return
RTE_SUCCESS on success and an error-code on failure.

Comment
pCommConfig→dwSize must be set to sizeof(VMF_COMM_CONFIG) before the function is called.

11.11.2024 Page 134/182

6.26 Os management

Synchronization notes:
The OS management functions use shared informations and their calls must be synchronized against
themselves and against each other.

6.26.1 vmfOsStart
Not implemented at the moment.

UINT32 vmfOsStart (
 UINT32 dwOsId,
 VMF_OS_START_PARAMS* pParams,
 UINT8* pbyAsyncJobContext
);

Parameter
dwOsId
 [in] ID of the OS to start

pParams
 [in]

pbyAsyncJobContext
 [in]

Return
RTE_SUCCESS on success and an error-code on failure.

Comment
–

6.26.2 vmfOsStop
Not implemented at the moment.

UINT32 vmfOsStop (
 UINT32 dwOsId,
 VMF_OS_START_PARAMS* pParams,
 UINT8* pbyAsyncJobContext
);

Parameter
dwOsId
 [in]

pParams
 [in]

pbyAsyncJobContext
 [in]

Return
RTE_SUCCESS on success
RTE_BUSY_RECALL if function needs to be recalled after a sleep(1)
RTE_ERROR_xxx on failure.

Comment
–

11.11.2024 Page 135/182

6.26.3 vmfOsSuspend
Not implemented at the moment.

UINT32 vmfOsSuspend (
 UINT32 dwOsId,
 VMF_OS_START_PARAMS* pParams,
 UINT8* pbyAsyncJobContext
);

Parameter
dwOsId
 [in]

pParams
 [in]

pbyAsyncJobContext
 [in]

Return
RTE_SUCCESS on success and an error-code on failure.

Comment
–

6.26.4 vmfOsResume
Not implemented at the moment.

UINT32 vmfOsResume (
 UINT32 dwOsId,
 VMF_OS_START_PARAMS* pParams,
 UINT8* pbyAsyncJobContext
);

Parameter
dwOsId
 [in]

pParams
 [in]

pbyAsyncJobContext
 [in]

Return
RTE_SUCCESS on success and an error-code on failure.

Comment
–

11.11.2024 Page 136/182

6.26.5 vmfOsNotificationModeSet

UINT32 vmfOsNotificationModeSet (
 UINT32 dwNotificationId,
 UINT32 dwMode,
 VMF_OS_NOTIFICATION_MODE_PARAMS* pParams
);

Parameter
dwNotificationId
 [in] ID of the notification to modify.
dwMode
 [in] new mode for the selected notification ID.
pParams
 [in] specific parameters.

Return
RTE_SUCCESS on success and an error-code on failure.

Comment
–

6.26.6 vmfOsGetIdCurrent

UINT32 vmfOsGetIdCurrent (
 UINT32* pdwOsId
);

Parameter
pdwOsId
 [out] ID of the current OS.

Return
RTE_SUCCESS on success and an error-code on failure.

Comment
–

11.11.2024 Page 137/182

6.26.7 vmfOsGetInfoA

UINT32 vmfOsGetInfoA (
 UINT32 dwOsId,
 VMF_OS_INFO_A* pInfo
);

Parameter
dwOsId

[in] ID of the OS to get the informations from. VMF_OSID_THISOS can be used to query
the information from the calling OS.

pInfo
 [out] ascii informations about the OS.

Return
RTE_SUCCESS on success and an error-code on failure.

Comment
pInfo→dwSize must be set to sizeof(VMF_OS_INFO_A) before the function is called.

6.26.8 vmfOsGetInfoW

UINT32 vmfOsGetInfoW (
 UINT32 dwOsId,
 VMF_OS_INFO_W* pInfo
);

Parameter
dwOsId

[in] ID of the OS to get the informations from. VMF_OSID_THISOS can be used to query
the information from the calling OS.

pInfo
 [out] unicode informations about the OS.

Return
RTE_SUCCESS on success and an error-code on failure.

Comment
pInfo→dwSize must be set to sizeof(VMF_OS_INFO_W) before the function is called.

6.26.9 vmfOsIdle
Signalize the idle state of the current OS on the current processor.
UINT32 vmfOsIdle (VOID);

Parameter
-

Return
RTE_SUCCESS on success and an error-code on failure.

Comment
This function should be called when the OS goes into his idle state on the current processor. On a
shared processor, this function switchs to the Os with the next lower priority.
If RTOS uses a lowest priority task for calling vmfOsIdle() it should not run any other task on the same
or a lower priority because it might never get CPU time.

11.11.2024 Page 138/182

6.26.10 vmfOsReboot
Signalize that the calling OS requires to reboot now.
UINT32 vmfOsReboot (VOID);

Parameter
-

Return
RTE_SUCCESS on success and an error-code on failure.

Comment
This function should be called when the OS decides to reboot.
This function is currently implemented to stop the OS – but a further version may reboot the OS
automatically.

6.26.11 vmfOsShutdown
Signalize that the calling OS did shut down.
UINT32 vmfOsShutdown (VOID);

Parameter
-

Return
RTE_SUCCESS on success and an error-code on failure.

Comment
This function should be called when the OS did shut down itself.

11.11.2024 Page 139/182

6.27 Config Registry

Starting with Build 4.1.00.41 / 4.5.00.41 / 5.0.00.41 VMF config registry functions support well-known
sections:

- VMF_CONFIGREG_HKEY_VMF
→Section [Vmf]

- VMF_CONFIGREG_HKEY_OS_CURRENT
→Section [Host], [Rtos], [Rtos1],… depending on the calling OS!

This allows using the same code on several OS while each call automatically results in the OS
depending section.

Attention to compatibility:
The new well known keys are not supported by versions previous to 4.1.00.41 / 4.5.00.41 / 5.0.00.41.
Using the well known keys in such a version might result in unpredictable behavior.
An application can check if the VMF version supports the well known keys like this:

// Compatibility:
// check for VMF_CONFIGREG_HKEY_OS_CURRENT support...
// using with VMF version prior to 4.1.00.41 / 4.5.00.41 / 5.0.00.41 might cause crash.
dwValueSize = sizeof(dwTmpVal);
dwRes = vmfConfigQueryValueA(VMF_TEXT(VMF_CONFIGREG_KEY_VMF),
VMF_TEXT(VMF_CONFIGREG_VALUE_VMF_VERSION),

VMF_CONFIG_DWORD_TYPE, (UINT8*)&dwTmpVal,
&dwValueSize, &AdditionalData);

if((RTE_SUCCESS == dwRes) && (0x011B0E00 <= dwTmpVal))
{
 dwRes = vmfConfigRegKeyOpenA(VMF_CONFIGREG_HKEY_OS_CURRENT,

szRegSubKey, &hKey);
 if(RTE_SUCCESS == dwRes)
 {
 ...
 vmfConfigRegKeyClose(hKey);
 hKey = NULL;
 }
}

6.27.1 vmfConfigRegKeyOpenA

UINT32 vmfConfigRegKeyOpenA (
 VMF_HANDLE hConfigRegRoot,
 CHAR* szKey,
 VMF_HANDLE* phConfigRegKey
);

Parameter
hConfigRegRoot
 [in] Handle to already open key where szKey can be found or NULL to start with root.

szKey
 [in] Name of key to be open.

phConfigRegKey
 [out] Handle to the open key.

Return
RTE_SUCCESS on success and an error-code on failure.

11.11.2024 Page 140/182

Comment
–

6.27.2 vmfConfigRegKeyOpenW

UINT32 vmfConfigRegKeyOpenW (
 VMF_HANDLE hConfigRegRoot,
 WCHAR* wszKey,
 VMF_HANDLE* phConfigRegKey
);

Parameter
hConfigRegRoot
 [in] Handle to already open key where wszKey can be found or NULL to start with root.

wszKey
 [in] Name of key to be open.

phConfigRegKey
 [out] Handle to the open key.

Return
RTE_SUCCESS on success and an error-code on failure.

Comment
–

6.27.3 vmfConfigRegKeyClose

UINT32 vmfConfigRegKeyClose (
 VMF_HANDLE hConfigRegKey
);

Parameter
hConfigRegKey
 [in] Handle to be closed.

Return
RTE_SUCCESS on success and an error-code on failure.

Comment
–

6.27.4 vmfConfigRegKeyEnumerateA

UINT32 vmfConfigRegKeyEnumerateA (
 VMF_HANDLE hConfigRegKey,
 UINT32 dwSubkeyIndex,
 CHAR* szName,
 UINT32* pdwNameLength,
 UINT32* pdwFlags
);

Parameter
hConfigRegKey
 [in] Handle to already open key where szName can be found or NULL to start with root.

11.11.2024 Page 141/182

dwSubkeyIndex
 [in] Index for the key to be queried.

szName
 [out] Name of the key at the queried index.

pdwNameLength
 [in/out] Length of the szName buffer / Length of returned key name.

pdwFlags
 [out] optional - if not NULL a combination of VMF_CONFIGREG_KEY_FLAG_xxx might be
returned.

Return
RTE_SUCCESS on success and an error-code on failure.

Comment
–

6.27.5 vmfConfigRegKeyEnumerateW

UINT32 vmfConfigRegKeyEnumerateW (
 VMF_HANDLE hConfigRegKey,
 UINT32 dwSubkeyIndex,
 WCHAR* wszName,
 UINT32* pdwNameLength,
 UINT32* pdwFlags
);

Parameter
hConfigRegKey
 [in] Handle to already open key where wszName can be found or NULL to start with root.

dwSubkeyIndex
 [in] Index for the key to be queried.

wszName
 [out] Name of the key at the queried index.

pdwNameLength
 [in/out] Length of the szName buffer / Length of returned key name.

pdwFlags
 [out] optional - if not NULL a combination of VMF_CONFIGREG_KEY_FLAG_xxx might be
returned.

Return
RTE_SUCCESS on success and an error-code on failure.

Comment
–

6.27.6 vmfConfigRegValueQueryA

UINT32 vmfConfigRegValueQueryA (
 VMF_HANDLE hConfigRegKey,
 CHAR* szValueName,
 UINT32* pdwFlags,

11.11.2024 Page 142/182

 UINT32* pdwType,
 UINT8* pbyData,
 UINT32* pdwDataSize
);

Parameter
hConfigRegKey
 [in] Handle to already open key where szValueName can be found or NULL to start with
root.

szValueName
 [in] Name of the value to be queried.

pdwFlags
 [out] optional - if not NULL a combination of VMF_CONFIGREG_VALUE_FLAG_xxx might
be returned.

pdwType
 [out] optional - if not NULL a value of VMF_CONFIGREG_TYPE_xxx will be returned.

pbyData
 [out] Buffer to return the value data.

pdwDataSize
 [in/out] Length of the data buffer available / Length of data buffer used.

Return
RTE_SUCCESS on success and an error-code on failure.

Comment
–

6.27.7 vmfConfigRegValueQueryW

UINT32 vmfConfigRegValueQueryW (
 VMF_HANDLE hConfigRegKey,
 WCHAR* wszValueName,
 UINT32* pdwFlags,
 UINT32* pdwType,
 UINT8* pbyData,
 UINT32* pdwDataSize
);

Parameter
hConfigRegKey
 [in] Handle to already open key where wszValueName can be found or NULL to start with
root.

wszValueName
 [in] Name of the value to be queried.

pdwFlags
 [out] optional - if not NULL a combination of VMF_CONFIGREG_VALUE_FLAG_xxx might
be returned.

pdwType
 [out] optional - if not NULL a value of VMF_CONFIGREG_TYPE_xxx will be returned.

pbyData
 [out] Buffer to return the value data.

11.11.2024 Page 143/182

pdwDataSize
 [in/out] Length of the data buffer available / Length of data buffer used.

Return
RTE_SUCCESS on success and an error-code on failure.

Comment
–

6.27.8 vmfConfigRegValueEnumerateA

UINT32 vmfConfigRegValueEnumerateA (
 VMF_HANDLE hConfigRegKey,
 UINT32 dwValueIndex,
 CHAR* szName,
 UINT32* pdwNameLength,
 UINT32* pdwFlags,
 UINT32* pdwType,
 UINT8* pbyData,
 UINT32* pdwDataSize
);

Parameter
hConfigRegKey
 [in] Handle to already open key where wszValueName can be found or NULL to start with
root.

dwValueIndex
 [in] Index for the value to be queried.

szName
 [out] Name of the value at the queried index.

pdwNameLength
 [in/out] Length of the szName buffer / Length of returned value name.

pdwFlags
 [out] optional - if not NULL a combination of VMF_CONFIGREG_VALUE_FLAG_xxx might
be returned.

pdwType
 [out] optional - if not NULL a value of VMF_CONFIGREG_TYPE_xxx will be returned.

pbyData
 [out] optional - if not NULL buffer to return the value data.

pbyDataSize
 [in/out] optional - if not NULL length of the data buffer available / Length of data buffer used.

Return
RTE_SUCCESS on success and an error-code on failure.

Comment
–

6.27.9 vmfConfigRegValueEnumerateW

UINT32 vmfConfigRegValueEnumerateW (

11.11.2024 Page 144/182

 VMF_HANDLE hConfigRegKey,
 UINT32 dwValueIndex,
 WCHAR* wszName,
 UINT32* pdwNameLength,
 UINT32* pdwFlags,
 UINT32* pdwType,
 UINT8* pbyData,
 UINT32* pdwDataSize
);

Parameter
hConfigRegKey
 [in] Handle to already open key where wszValueName can be found or NULL to start with
root.

dwValueIndex
 [in] Index for the value to be queried.

wszName
 [out] Name of the value at the queried index.

pdwNameLength
 [in/out] Length of the szName buffer / Length of returned value name.

pdwFlags
 [out] optional - if not NULL a combination of VMF_CONFIGREG_VALUE_FLAG_xxx might
be returned.

pdwType
 [out] optional - if not NULL a value of VMF_CONFIGREG_TYPE_xxx will be returned.

pbyData
 [out] optional - if not NULL buffer to return the value data.

pbyDataSize
 [in/out] optional - if not NULL length of the data buffer available / Length of data buffer used.

Return
RTE_SUCCESS on success and an error-code on failure.

Comment
–

11.11.2024 Page 145/182

6.28 Miscellaneous

6.28.1 vmfIdGetByNameA

UINT32 vmfIdGetByNameA (
 CHAR* szName,
 UINT32 dwIdType,
 UINT32* pdwId,
);

Parameter
szName
 [in] Name of the ID

dwIdType
 [in] Type of the ID

pdwId
 [out] ID number

Return
RTE_SUCCESS on success and an error-code on failure.

Comment
See vmfIdGetByNameW

6.28.2 vmfIdGetByNameW

UINT32 vmfIdGetByNameW (
 WCHAR* wszName,
 UINT32 dwIdType,
 UINT32* pdwId,
);

Parameter
wszName
 [in] Name of the ID

dwIdType
 [in] Type of the ID

pdwId
 [out] ID number

Return
RTE_SUCCESS on success and an error-code on failure.

Comment
- Following ID Types are supported:

- VMF_ID_OS
- VMF_ID_DEVICE
- VMF_ID_SHM

11.11.2024 Page 146/182

This function has to be used to get the ID to a known ID name. Usually only the Name of an OS,
Device, or shared memory is known. Never use a ID which is not calculated with the function
vmfIdGetByName().

6.28.3 vmfIdGetNameA

UINT32 vmfIdGetNameA (
 UINT32 dwIdType,
 UINT32 dwId,
 CHAR* szName,
 UINT32* *pdwNameLen,
);

Parameter
dwIdType
 [in] Type of the ID

dwId
 [in] ID number

szName
 [in] Name of the ID

pdwNameLen
 [in/out] Length of name in characters

Return
RTE_SUCCESS on success and an error-code on failure
If RTE_ERROR_NODATAEXCHANGEBUFFER is returned * pdwNameLenth contains the required
length.

Comment
See vmfIdGetNameW

6.28.4 vmfIdGetNameW

UINT32 vmfIdGetNameW (
 UINT32 dwIdType,
 UINT32 dwId,
 WCHAR* wszName,
 UINT32* *pdwNameLen,
);

Parameter
dwIdType
 [in] Type of the ID

dwId
 [in] ID number

wszName
 [in] Name of the ID

pdwNameLen
 [in/out] Length of name in characters

11.11.2024 Page 147/182

Return
RTE_SUCCESS on success and an error-code on failure.
If RTE_ERROR_NODATAEXCHANGEBUFFER is returned * pdwNameLenth contains the required
length.

Comment
- Following ID Types are supported:

- VMF_ID_DEVICE
- VMF_ID_INTERRUPT

This function can be used to get the name for an ID.

6.28.5 vmfIdShowA

UINT32 vmfIdShow (
 VMF_PFN_PRINT_A pfnPrintA,
 UINT32 dwIdType,
 UINT32 dwId,
 INT32 nMode
);

Parameter
pfnPrintA
 [in] function pointer to a ascii print function: INT32 function(const CHAR *szFormat, ...);

dwIdType
 [in] Type of the ID

dwId
 [in] ID number

nMode
 [in] display mode

Return
RTE_SUCCESS on success and an error-code on failure.

Comment
See vmfIdShowW

6.28.6 vmfIdShowW

UINT32 vmfIdShow (
 VMF_PFN_PRINT_W pfnPrintW,
 UINT32 dwIdType,
 UINT32 dwId,
 INT32 nMode
);

Parameter
pfnPrintW
 [in] function pointer to a unicode print function: INT32 function(const WHAR *wszFormat,

...);

dwIdType
 [in] Type of the ID

11.11.2024 Page 148/182

dwId
 [in] ID number

nMode
 [in] display mode

Return
RTE_SUCCESS on success and an error-code on failure.

Comment
- Following ID Types are supported:

- VMF_ID_OS
- VMF_ID_DEVICE
- VMF_ID_VNET
- VMF_ID_SHM
- VMF_ID_IOAPIC
- VMF_ID_PROCESSOR
- VMF_ID_COMM
- VMF_ID_EVENT
- VMF_ID_INTERRUPT
- VMF_ID_CORE

This function can be used to show detailed information about the current VMF configuration. This can
be used during development or in error cases. It should not be used to parse for any required
information because the output may change in format and information without notice.

It can also be called directly from the Uploader:
RtosUpload.exe -IdShow “dwIdType,dwId,nMode”

6.28.7 vmfAsyncJobIsDone

UINT32 vmfAsyncJobIsDone (
 UINT8* pbyAsyncJobContext,
 BOOL* pbIsDone
);

Parameter
pbyAsyncJobContext
 [in] pointer to a asynchronous context structure.

pbIsDone
 [in] TRUE if the asynchronous job is done.

Return
RTE_SUCCESS on success
RTE_BUSY_RECALL if function needs to be recalled after a sleep(1)
RTE_ERROR_xxx on failure.

Comment
–

6.29 Privileged functions

Some of the VMF functions require specific privileges to be successfully executed.

11.11.2024 Page 149/182

6.29.1 Functions requesting IO privilege level
The following functions need IOPL=3, if they are called with CPL=3
(they are using assembler commands like pushfl, cli, popfl,…):

vmfOsStart
vmfOsStop
vmfInterruptGenerate
vmfProcessorStart
vmfProcessorStop
vmfTimerVirtGetCurrentCount
vmfTimerVirtSetOutputFreq

6.29.2 Functions requesting privileged execution level
The following functions need CPL=0 (due to access to CR registers and using assembler
commands like lgdt, lidt, ltr,…):

vmfOsStart
vmfOsStop
vmfTunnelSwitch
vmfTimeStampGetValue if CR4.TSD set (rdtsc)

11.11.2024 Page 150/182

7 VMF Interface serialization
On some operating systems it is necessary to serialize VMF functions.
If for example on Windows or Windows CE a VMF function shall be called in user mode
(Ring 3) the call has to be serialized first. In a second step the serialized data have to be
transferred to a kernel driver (using some kind of IoControl call). Then the kernel driver has
to de-serialize the data and call the appropriate VMF functions. The results then will have to
be transferred back to the user mode application.
For this purpose VmfWin contains a portable serialization module. Most of the serialization
can be handled in a generic way, only a few simple functions have to be implemented in a
separate operating system specific adaptation layer.

The following files are shipped:
…\VmfInterfaceSerializing\UserMode\vmfCall.c
 → portable serialization module for the user mode
…\VmfInterfaceSerializing\UserMode\vmfCallOs.h
 → function prototypes for the operating system adaptation layer (user mode).
…\VmfInterfaceSerializing\UserMode\WinCE\rteOs.h
 → example Windows CE VMF adaptation layer header (user mode)
…\VmfInterfaceSerializing\UserMode\WinCE\vmfCallCE.c
 → example Windows CE adaptation layer (user mode)
…\VmfInterfaceSerializing\UserMode\WinXP\rteOs.h
 → example Windows VMF adaptation layer header (user mode)
…\VmfInterfaceSerializing\UserMode\WinXP\vmfCallXP.c
 → example Windows adaptation layer (user mode)
…\VmfInterfaceSerializing\KernelMode\vmfCallDispatch.c
 → portable de-serialization module for the kernel mode
…\VmfInterfaceSerializing\KernelMode\WinCE\rteOs.h
 → example Windows CE VMF adaptation layer header (kernel mode)
…\VmfInterfaceSerializing\KernelMode\WinCE\vmfCallDispatchCE.c
 → example Windows CE adaptation layer (kernel mode)
…\VmfInterfaceSerializing\KernelMode\WinXP\rteOs.h
 → example Windows VMF adaptation layer header (kernel mode)
…\VmfInterfaceSerializing\KernelMode\WinXP\vmfCallDispatchXP.c
 → example Windows adaptation layer (kernel mode)

11.11.2024 Page 151/182

To port this serialization module the following steps have to be done:
– adjust the user mode adaptation layer. The most important function is the vmfCall()

function which has to transfer the serialized data between user mode and kernel mode.
The macro VMFCALL_ABSOLUTE has to be set in rteOs.h!

– create a user mode library which contains the following files: vmfCall.c + vmfCallOS.c
(e.g. vmfCallCE.c). This library will then provide vmfXxx() functions available as a user
mode library.

– Create the counter part of the vmfCall() function in the kernel driver. Here the data
transferred by vmfCall() will be received and the generic vmfCallDispatch() function
(which actually executes the appropriate VMF routine) has to be called.

– Adjust the kernel mode adaptation layer.
The macro VMFCALL_RELATIVE has to be set in rteOs.h!
The following functions have to be implemented:

• vmfIsReadyForCallsOs() This function will have to return a value of TRUE when the
system is ready to execute VMF functions.

• vmfCallPrintfInit() This function configures a buffer for a vmfCallPrintf callback.
Returns RTE_SUCCESS, RTE_ERROR_NOT_IMPL or RTE_ERROR_xxx.

• vmfCallPrintfDeinit() This function removes a buffer configuration for a vmfCallPrintf
callback. Returns RTE_SUCCESS, RTE_ERROR_NOT_IMPL or RTE_ERROR_xxx.

• vmfCallPrintfA() This is the ASCII printf callback function. It will use the buffer
configured with a call to vmfCallPrintfInit. Returns RTE_SUCCESS,
RTE_ERROR_NOT_IMPL or RTE_ERROR_xxx.

• vmfCallPrintfW() This is the UNICODE printf callback function. It will use the buffer
configured with a call to vmfCallPrintfInit. Returns RTE_SUCCESS,
RTE_ERROR_NOT_IMPL or RTE_ERROR_xxx.

– Include the following files in your kernel driver or RTOS BSP: vmfCallDispatch.c +
vmfCallDispatchOS.c (e.g. vmfCallDispatchCE.c). These functions will then act as a
backend for the user mode library.

11.11.2024 Page 152/182

8 The RTOS Library
The RTOS library provides higher level communication services for synchronizing Windows with the
RTOS or to exchange data between the operating systems. The RTOS library is based on VMF
functions which provide the basic communication functionality.
This library is provided in source code as it has to be ported to the RTOS. To make this job easier
most of the source code is written OS independently. The OS adaptation is done in a separate OS
adaptation layer. VmfWin provides example

8.1 Porting the RTOS Library

Most of the RTOS library is generic source code which should be easily portable to any operating
system. Only a small adaptation layer has to be adjusted to port the library.
The generic source files are located in …\RtosLib
The example adaptation layers are located in

a) VxWorks
…\RtosLib\VxWorks (one adaptation layer RtosLibOs.c for kernel mode and one RtosLibOsRtp.c
for real-time processes)
b) Windows CE
…\RtosLib\WinCE (RtosLibOs.c).
c) Windows
…\RtosLib\WinXP (RtosLibOs.c).

To port the RTOS library the following steps have to be done:
– Adjust the adaptation layer located in rteOs.h and RtosLibOs.h and create required

adapting function in RtosLibOs.c.
– Create a user mode library which contains all generic source files and the adaptation

layer files. This library will then provide the Rtos Library functions available as a user
mode library.

8.1.1 RTOS Library OS adaptation layer
The following routines are required by the RTOS library. These functions have to be ported to the
RTOS. The header file for the adaptation layer is located in …\RtosLib\RtosLibOs.h.
The generic part of the RTOS library uses macros for OS specific function calls. These macros have to
be defined at RtosLibOs.h.

For most generic functions a compatible os function can be used:
#define RTOSLIB_OS_MALLOC(SIZE) malloc(SIZE)

If no compatible os function exists a convert function can be used:

#define RTOSLIB_OS_TIMESYNC_TIME_SET(TIME, RES) OSTimeSyncTimeSet(TIME, RES)

UINT32 OSTimeSyncTimeSet(const VMF_STAMPED_TIME* pVmfStampedTime, const UINT32

dwReserved)

{

…

SetLocalTime(…);

…

};

It is also possible to leave some not required functions blank:
#define RTOSLIB_OS_INITDONE() RTE_SUCCESS

11.11.2024 Page 153/182

8.1.1.1 RTOSLIB_OS_INIT

RTOS library Initialization function. This function is called once before other library functions can be
called.

UINT32 RTOSLIB_OS_INIT(VOID)

Parameter
–

Return
RTE_SUCCESS on success and an error-code on failure.

Comment
–

8.1.1.2 RTOSLIB_OS_DEINIT

RTOS library De-Initialization function. This function is called to terminate the RTOS library operation.

UINT32 RTOSLIB_OS_DEINIT(VOID)

Parameter
–

Return
RTE_SUCCESS on success and an error-code on failure.

Comment
–

8.1.1.3 RTOSLIB_OS_INITDONE

RTOS library initialization done function.

UINT32 RTOSLIB_OS_INITDONE(VOID)

Parameter
–

Return
RTE_SUCCESS on success and an error-code on failure.

Comment
RtosLibInit at last calls this function.
Except Windows every other OS should call RtosLibOnVmfLoadEx() from within
OSRtosLibOnInitDone because VMF is already started.

11.11.2024 Page 154/182

8.1.1.4 RTOSLIB_OS_DEINITSTART

RTOS library de-initialization start function. RtosLibDeinit at first calls this function.

UINT32 RTOSLIB_OS_DEINITSTART(VOID)

Parameter
–

Return
RTE_SUCCESS on success and an error-code on failure.

Comment
Except Windows every other OS should call RtosLibOnVmfUnloadEx() from within
OSRtosLibOnDeinitStart().

8.1.1.5 RTOSLIB_OS_ON_VMFLOAD

RTOS library on vmf load function. RtosLibOnVmfLoadEx calls this function.

UINT32 RTOSLIB_OS_ON_VMFLOAD(VOID)

Parameter
–

Return
RTE_SUCCESS on success and an error-code on failure.

Comment
An OS now can query VMF for information. RtosLib uses this functionality to initialize all VMF
dependent information.

8.1.1.6 RTOSLIB_OS_ON_VMFUNLOAD

RTOS library on vmf unload function. RtosLibOnVmfUnloadEx calls this function.

UINT32 RTOSLIB_OS_ON_VMFUNLOAD(VOID)

Parameter
–

Return
RTE_SUCCESS on success and an error-code on failure.

Comment
An OS now should release VMF dependend information. RtosLib uses this functionality to de-initialize
and release all VMF dependent information.

11.11.2024 Page 155/182

8.1.1.7 RTOSLIB_OS_SYSTEM_EVENT_SET

RTOS System Event set function.

UINT32 RTOSLIB_OS_SYSTEM_EVENT_SET(
 UINT32 dwEventId
);

Parameter
dwEventId
 [in] Event to be signaled. This can be one of the OS_RTOSLIB_SYSTEMEVENT_xxx

events.

Return
RTE_SUCCESS on success and an error-code on failure.

Comment
This function is currently used by Windows to signal other RtosLib instances load or unload of the
VMF. It is currently not required for other OS’s.

8.1.1.8 RTOSLIB_OS_APISYNC_INIT

Initialize the API synchronization function. This function is called once before other library functions
can be called.

UINT32 RTOSLIB_OS_APISYNC_INIT(VOID)

Parameter
–

Return
RTE_SUCCESS on success and an error-code on failure.

Comment
The API synchronization function is intended for usage in Windows only. Porting this function to a new
RTOS will usually leave these functions empty.
Windows API synchronization:
Prior to stop the whole system it has to be assured that no application is calling or entering one of the
Rtos Library functions. This is handled by the RtosLib API synchronization mechanism.
Every time an RtosLib function is called a mutex will be taken inside. Thus a maximum number of
RTOSLIB_APISYNC_MAX_USER threads may concurrently call RtosLib functions.
If the system shall be stopped the maximum count of mutex will be taken, then it can be assured that
no other thread is calling any RtosLib function.

11.11.2024 Page 156/182

8.1.1.9 RTOSLIB_OS_APISYNC_DEINIT

De-Initialize the API synchronization function.

UINT32 RTOSLIB_OS_APISYNC_DEINIT(VOID)

Parameter
–

Return
RTE_SUCCESS on success and an error-code on failure.

Comment
This function is usually empty on the RTOS side.

8.1.1.10 RTOSLIB_OS_APISYNC_ENTER

Enter API synchronization. This function is called at the beginning of an RtosLib function. It assures
that a maximum number of threads are concurrently executing RtosLib functions.

UINT32 RTOSLIB_OS_APISYNC_ENTER(
 VMF_HANDLE* phLock,
 BOOL bGlobalLock
);

Parameter
phLock
 [out] synchronization object to be returned in the corresponding OSRtosLibApiSyncExit

function
bGlobalLock
 [in] TRUE if further calls to RtosLib functions shall be globally locked.

Return
RTE_SUCCESS on success and an error-code on failure.

Comment
The bGlobalLock flag must only be set in Windows prior to stopping the RTOS operation.

8.1.1.11 RTOSLIB_OS_APISYNC_EXIT

Exit API synchronization. This function is called at the end of an RtosLib function.

UINT32 RTOSLIB_OS_APISYNC_EXIT(
 VMF_HANDLE* phLock
);

Parameter
phLock
 [in] synchronization object returned in the corresponding OSRtosLibApiSyncEnter function

Return
RTE_SUCCESS on success and an error-code on failure.

Comment
–

11.11.2024 Page 157/182

8.1.1.12 RTOSLIB_OS_APISYNC_STARTSTOPENTER

Enter start/stop API synchronization. This function is called at the beginning of a start or stop function.

UINT32 RTOSLIB_OS_APISYNC_STARTSTOPENTER(
 VMF_HANDLE* phLock
);

Parameter
phLock
 [out] synchronization object to be returned in the corresponding

OSRtosLibApiSyncStartStopExit function

Return
RTE_SUCCESS on success and an error-code on failure.

Comment
This function is only used by Windows to prevent multiple start/stop calls executed at the same time.

8.1.1.13 RTOSLIB_OS_APISYNC_STARTSTOPEXIT

Exit start/stop API synchronization. This function is called at the end of a start or stop function.

UINT32 RTOSLIB_OS_APISYNC_STARTSTOPEXIT(
 VMF_HANDLE* phLock
);

Parameter
phLock
 [in] synchronization object returned in the corresponding

OSRtosLibApiSyncStartStopEnter function

Return
RTE_SUCCESS on success and an error-code on failure.

Comment
This function is only used by Windows to prevent multiple start/stop calls executed at the same time.

11.11.2024 Page 158/182

8.1.1.14 RTOSLIB_OS_CALLOC

Allocate zero initialized memory.

VOID* RTOSLIB_OS_CALLOC(
 UINT32 dwNum,
 UINT32 dwSize,
);

Parameter
dwNum
 [in] Number of memory blocks
dwSize
 [in] Size of one memory block

Return
Pointer to the memory or NULL in case of an error.

Comment
–

8.1.1.15 RTOSLIB_OS_MALLOC

Allocate memory.

VOID* RTOSLIB_OS_MALLOC(
 UINT32 dwSize,
);

Parameter
dwSize
 [in] Size of memory

Return
Pointer to the memory or NULL in case of an error.

Comment
–

8.1.1.16 RTOSLIB_OS_FREE

Free memory previously allocated with OScalloc() or OSmalloc().

VOID RTOSLIB_OS_FREE(
 VOID* pMemory)

Parameter
pMemory
 [in] Pointer to memory

Return
–

Comment
–

11.11.2024 Page 159/182

8.1.1.17 RTOSLIB_OS_MEMCPY

Copy memory.

VOID* RTOSLIB_OS_MEMCPY(
 VOID* pDest,
 const VOID* pSrc,
 UINT32 dwLen)

Parameter
pDest
 [in] Pointer to destination memory
pSrc
 [in] Pointer to source memory
dwLen
 [in] number of bytes to copy

Return
Value of pDest.

Comment
–

8.1.1.18 RTOSLIB_OS_SLEEP

Delay execution.

VOID RTOSLIB_OS_SLEEP(
 UINT32 dwMillisec)

Parameter
dwMillisec
 [in] delay time in milliseconds.

Return
–

Comment
–

11.11.2024 Page 160/182

8.1.1.19 RTOSLIB_OS_STRCMPA

String compare (ASCII version).

INT32 RTOSLIB_OS_STRCMPA(
 const CHAR* szStr1,
 const CHAR* szStr2)

Parameter
szStr1
 [in] First string to compare
szStr2
 [in] Second string to compare

Return
Compatible with the ANSI strcmp function.

Comment
–

8.1.1.20 RTOSLIB_OS_STRCMPW

String compare (wide char version).

INT32 RTOSLIB_OS_STRCMPW(
 const WCHAR* wszStr1,
 const WCHAR* wszStr2)

Parameter
wszStr1
 [in] First string to compare
wszStr2
 [in] Second string to compare

Return
Compatible with the ANSI strcmp function.

Comment
–

11.11.2024 Page 161/182

8.1.1.21 RTOSLIB_OS_STRNCPYA

String copy (ASCII version).

CHAR* RTOSLIB_OS_STRNCPYA(
 CHAR* szDest,
 const CHAR* szSrc,
 UINT32 dwLen)

Parameter
szDest
 [out] Destination string
szSrc
 [in] Source string
dwLen
 [in] Maximum number of bytes to copy

Return
szDest on success, NULL on error.

Comment
–

8.1.1.22 RTOSLIB_OS_STRNCPYW

String copy (wide char version).

WCHAR* RTOSLIB_OS_STRNCPYW(
 WCHAR* wszDest,
 const WCHAR* wszSrc,
 UINT32 dwLen)

Parameter
wszDest
 [out] Destination string
wszSrc
 [in] Source string
dwLen
 [in] Maximum number of bytes to copy

Return
wszDest on success, NULL on error.

Comment
–

11.11.2024 Page 162/182

8.1.1.23 RTOSLIB_OS_SHM_MAP

Shared memory mapping. This function has to provide access to the shared memory area(s) of the
RTOS Virtual Machine.

UINT32 RTOSLIB_OS_SHM_MAP(
 PRTOSLIBSHM_DESC pRtosShmDesc,
 UINT32 dwRequestedSize,
 UINT32 dwOffset)

Parameter
pRtosShmDesc
 [in,out] Shared Memory Descriptor (see below)
dwRequestedSize
 [in] Number of bytes to map
dwOffset
 [in] Offset where the mapping shall begin

Return
Granted size (number of bytes actually mapped).

Comment
The granted size may be smaller than the requested size.

RTOSLIBSHM_DESC
Shared Memory Descriptor

typedef struct _RTOSLIBSHM_DESC

{

 UINT64 qwPhysAddr;

 UINT32 dwPhysSize;

 UINT32 dwAccessMode;

 UINT32 dwMappedSize;

 UINT32 dwMappedOffset;

 VOID* lpMappedPtr;

 UINT32 dwCookie;

 UINT32 dwMappedSizeOsInternal;

 UINT32 dwMappedOffsetOsInternal;

 VOID* lpMappedPtrOsInternal;

 VMF_HANDLE hMutex;

 BOOL bMapped;

} RTOSLIBSHM_DESC;

Description
qwPhysAddr
 [in] Physical address
dwPhysSize
 [in] Size of the shared memory area.
dwAccessMode
 [in] Access mode bitmask. Contains VMF_SHM_ACCESSMODE_xxx values to

differentiate between read only / read write, uncached / cached and executable / not
executable memory.

dwMappedSize
 [out] Size of the mapped memory area.

dwMappedOffset
 [out] Offset where the mapping begins.

lpMappedPtr
 [out] Pointer to the mapped memory area.

dwCookie

11.11.2024 Page 163/182

 [out] Optional value. In further calls to the adaptation layer this value will be preserved.
The adaptation layer may store internal data here.

dwMappedSizeOsInternal
 [out] adaptation layer internal value for the mapped size. If the effectively mapped size is

different from the requested size to map this information may be stored here. The

value stored in dwMappedSizeOsInternal is not used by the generic RtosLib
source code. This may be the case if only a multiple of the page size can be
mapped and only a small amount is requested to be mapped.

dwMappedOffsetOsInternal
 [out] adaptation layer internal value for the mapped offset. If the effectively mapped offset

is different from the requested offset to map this information may be stored here.

The value stored in dwMappedOffsetOsInternal is not used by the generic
RtosLib source code. This may be the case if only page aligned offsets can be
mapped and the requested offset is not page aligned.

lpMappedPtrOsInternal
 [out] adaptation layer internal value for the mapped pointer. If the effectively mapped

pointer is different from the value returned in lpMappedPtr this information may be

stored here. The value stored in lpMappedPtrOsInternal is not used by the
generic RtosLib source code. This may be the case if only page aligned offsets
can be mapped and the requested offset is not page aligned.

hMutex
 [] Mutex handle (only for internal use in the generic RtosLib source code).

bMapped
 [in] TRUE if a part or the whole shared memory area is mapped.

8.1.1.24 RTOSLIB_OS_SHM_UNMAP

Shared memory mapping. This function has to release access to the shared memory area(s) of the
RTOS Virtual Machine.

UINT32 RTOSLIB_OS_SHM_UNMAP(
 PRTOSLIBSHM_DESC pRtosShmDesc)

Parameter
pRtosShmDesc
 [in,out] Shared Memory Descriptor (see below)

Return
RTE_SUCCESS on success and an error-code on failure.

Comment
–

11.11.2024 Page 164/182

8.1.1.25 RTOSLIB_OS_EVENT_CREATEA

Create a named event (ASCII version).

UINT32 RTOSLIB_OS_EVENT_CREATEA(
 BOOL bInitialState,
 const CHAR* szName,
 VMF_HANDLE* phEvent)

Parameter
bInitialState
 [in] TRUE if the event’s state shall be signaled after creating the event object.
szName
 [in] Event name
phEvent
 [out] Event handle

Return
RTE_SUCCESS on success and an error-code on failure.

Comment
If the event already exists a handle to the existing event object will be returned.

8.1.1.26 RTOSLIB_OS_EVENT_CREATEW

Create a named event (wide char version).

UINT32 RTOSLIB_OS_EVENT_CREATEW(
 BOOL bInitialState,
 const WCHAR* wszName,
 VMF_HANDLE* phEvent)

Parameter
bInitialState
 [in] TRUE if the event’s state shall be signaled after creating the event object.
wszName
 [in] Event name
phEvent
 [out] Event handle

Return
RTE_SUCCESS on success and an error-code on failure.

Comment
If the event already exists a handle to the existing event object will be returned.

11.11.2024 Page 165/182

8.1.1.27 RTOSLIB_OS_EVENT_OPENA

Open an already existing named event (ASCII version).

UINT32 RTOSLIB_OS_EVENT_OPENA(
 const CHAR* szName,
 VMF_HANDLE* phEvent)

Parameter
szName
 [in] Event name
phEvent
 [out] Event handle

Return
RTE_SUCCESS on success and an error-code on failure.

Comment
–

8.1.1.28 RTOSLIB_OS_EVENT_OPENW

Open an already existing named event (wide char version).

UINT32 RTOSLIB_OS_EVENT_OPENW(
 const WCHAR* wszName,
 VMF_HANDLE* phEvent)

Parameter
wszName
 [in] Event name
phEvent
 [out] Event handle

Return
RTE_SUCCESS on success and an error-code on failure.

Comment
–

8.1.1.29 RTOSLIB_OS_EVENT_CLOSE

Close the handle to an event.

UINT32 RTOSLIB_OS_EVENT_CLOSE(
 VMF_HANDLE* phEvent)

Parameter
phEvent
 [in] Event handle

Return
RTE_SUCCESS on success and an error-code on failure.

Comment
If all handles to the event object are closed the event has to be deleted.

11.11.2024 Page 166/182

8.1.1.30 RTOSLIB_OS_EVENT_SET

Set the event to the signaled state.

UINT32 RTOSLIB_OS_EVENT_SET(
 VMF_HANDLE* phEvent)

Parameter
phEvent
 [in] Event handle

Return
RTE_SUCCESS on success and an error-code on failure.

Comment
The highest priority thread waiting for the event will unblock and resume operation. The event will then
be automatically set into the non-signaled state.

8.1.1.31 RTOSLIB_OS_EVENT_WAIT

Wait until the event is signaled.

UINT32 RTOSLIB_OS_EVENT_WAIT(
 VMF_HANDLE* phEvent
 UINT32 dwTimeout)

Parameter
phEvent
 [in] Event handle
dwTimeout
 [in] Timeout in milliseconds

Return
RTE_SUCCESS on success and an error-code on failure (RTE_ERROR_TIMEOUT on timeout).

Comment
Only the highest priority thread waiting for the event will unblock and resume operation. The event will
then be automatically set into the non-signaled state.

11.11.2024 Page 167/182

8.1.1.32 RTOSLIB_OS_EVENT_SHOW

Show internal event descriptor information (for debugging purposes only).

UINT32 RTOSLIB_OS_EVENT_SHOW(
 INT32 nMode)

Parameter
nMode
 [in] 0: show descriptor information of event descriptors which are in use

1: show descriptor information of all event descriptors

Return
RTE_SUCCESS on success and an error-code on failure.

Comment
–

8.1.1.33 RTOSLIB_OS_INTERLOCKEDCOMPAREEXCHANGEEX

Performs an atomic compare-and-exchange operation on the specified values. The function compares
two specified 32-bit values and exchanges with another 32-bit value based on the outcome of the
comparison.

UINT32 RTOSLIB_OS_INTERLOCKEDCOMPAREEXCHANGEEX(
 UINT32 voilatile* pdwDest,
 UINT32 dwExchg,
 UINT32 dwComparand,
 UINT32* pdwInitial,
 const PRTOSLIBSHM_DESC pShmDesc
);

Parameter
pdwDest
 [in,out] A pointer to the destination value.
dwExchg
 [in] The exchange value.
dwComparand
 [in] The value to be compared to pdwDest.
pdwInitial
 [out] Destination value found at start of compare.
pShmDesc
 [in] If not NULL then pdwDest points into the shared memory described by pShmDesc. If

NULL then pdwDest points into the VMF.

Return
RTE_SUCCESS on success and an error-code on failure.

Comment
A return value of RTE_SUCCESS doesn’t mean, that the value was exchanged. It just means that the
call was executed and initial state of the variable is returned in pdwInitial.
If the return value is RTE_SUCCESS and dwInitial is equal to dwComparand then the value has been
exchanged.

11.11.2024 Page 168/182

8.1.1.34 RTOSLIB_OS_MUTEX_CREATEA

Create a named mutex (ASCII version).

UINT32 RTOSLIB_OS_MUTEX_CREATEA(
 const CHAR* szName,
 VMF_HANDLE* phEvent)

Parameter
szName
 [in] Mutex name
phEvent
 [out] Mutex handle

Return
RTE_SUCCESS on success and an error-code on failure.

Comment
If the mutex already exists an handle to the existing mutex object will be returned.

8.1.1.35 RTOSLIB_OS_MUTEX_CREATEW

Create a named mutex (wide char version).

UINT32 RTOSLIB_OS_MUTEX_CREATEW(
 const WCHAR* wszName,
 VMF_HANDLE* phEvent)

Parameter
wszName
 [in] Mutex name
phEvent
 [out] Mutex handle

Return
RTE_SUCCESS on success and an error-code on failure.

Comment
If the mutex already exists an handle to the existing mutex object will be returned.

8.1.1.36 RTOSLIB_OS_MUTEX_CLOSE

Close the handle to a mutex.

UINT32 RTOSLIB_OS_MUTEX_CLOSE(
 VMF_HANDLE hMutex)

Parameter
hMutex
 [in] Mutex handle

Return
RTE_SUCCESS on success and an error-code on failure.

Comment
If all handles to the mutex object are closed the mutex has to be deleted.

11.11.2024 Page 169/182

8.1.1.37 RTOSLIB_OS_MUTEX_TAKE

Take access to the resource which is synchronized by the mutex object.

UINT32 RTOSLIB_OS_MUTEX_TAKE(
 VMF_HANDLE hMutex)

Parameter
hMutex
 [in] Mutex handle

Return
RTE_SUCCESS on success and an error-code on failure.

Comment
–

8.1.1.38 RTOSLIB_OS_MUTEX_RELEASE

Release access to the resource which is synchronized by the mutex object.

UINT32 RTOSLIB_OS_MUTEX_RELEASE(
 VMF_HANDLE hMutex)

Parameter
hMutex
 [in] Mutex handle

Return
RTE_SUCCESS on success and an error-code on failure.

Comment
–

11.11.2024 Page 170/182

8.1.1.39 RTOSLIB_OS_COMMTASK_START

Create and start the inter-OS communication task.

UINT32 RTOSLIB_OS_COMMTASK_START(
 PRTOSLIBCOMM_DESC pRtosCommDesc)

Parameter
pRtosCommDesc
 [in,out] RTOS communication descriptor, see below.

Return
RTE_SUCCESS on success and an error-code on failure.

Comment
This function has to create and start a new task which is responsible for inter-OS communication
services (e.g. event or mutex handling). The task itself is part of the generic RtosLib sourcecode, its
entrypoint is defined as follows: UINT32 RtosLibCommTask(RTOSLIBCOMM_DESC* pRtosCommDesc)

RTOSLIBCOMM_DESC
Communication Descriptor

typedef struct _RTOSLIBCOMM_DESC

{

 BOOL bInitialized;

 BOOL bCommTaskRunning;

 BOOL bCommTaskStop; /* set by start / stop function */

 VMF_HANDLE hTaskId;

 VMF_HANDLE hMutex;

 RTOSLIBLIST HandleList;

 VMF_HANDLE hRtosLibApiSync;

} RTOSLIBCOMM_DESC;

Description
bInitialized
 [] Used by the generic RtosLib source code.
bCommTaskRunning
 [] Used by the generic RtosLib source code.
bCommTaskStop
 [] Used by the generic RtosLib source code.
hTaskId
 [out] Handle of the created task/thread.
hMutex
 [] Used by the generic RtosLib source code.
HandleList
 [] Used by the generic RtosLib source code.
hRtosLibApiSync
 [] Used by the generic RtosLib source code.

11.11.2024 Page 171/182

8.1.1.40 RTOSLIB_OS_COMMTASK_STOP

Wait until the communication task has terminated.

UINT32 RTOSLIB_OS_COMMTASK_STOP(
 PRTOSLIBCOMM_DESC pRtosCommDesc)

Parameter
pRtosCommDesc
 [in,out] RTOS communication descriptor.

Return
RTE_SUCCESS on success and an error-code on failure.

Comment
Prior to this call the RtosLib initiated a shutdown of the CommTask. The adaptation layer should wait
here until the task is finally gone. If after some timeout it is still running an error message should be
generated and the task may be killed.

11.11.2024 Page 172/182

8.1.1.41 RTOSLIB_OS_MSGBOX_TASK_START

Create and start the message box helper task.

UINT32 RTOSLIB_OS_MSGBOX_TASK_START(
 PRTOSLIBMSGBOX_DESC pRtosMsgBoxDesc)

Parameter
pRtosMsgBoxDesc
 [in,out] RTOS message box descriptor, see below.

Return
RTE_SUCCESS on success and an error-code on failure.

Comment
This function has to create and start a new task which is responsible for message box processing (e.g.
wait for a new message box to be shown). The task itself is part of the generic RtosLib sourcecode, its
entrypoint is defined as follows:
UINT32 RtosLibMsgBoxTask(RTOSLIBMSGBOX_DESC* pRtosMsgBoxDesc)

Note: Currently this function has to return RTE_ERROR on any RTOS. This function is intended only
for the Windows part which is responsible to show a message box sent by the RTOS.

RTOSLIBMSGBOX_DESC
Message Box Descriptor

typedef struct _RTOSLIBMSGBOX_DESC

{

 BOOL bInitialized;

 BOOL bMsgBoxTaskRunning;

 BOOL bMsgBoxTaskStop;

 VMF_HANDLE hTaskId;

 VMF_HANDLE hRtosLibApiSync;

} RTOSLIBMSGBOX_DESC;

Description
bInitialized
 [] Used by the generic RtosLib source code.
bMsgBoxTaskRunning
 [] Used by the generic RtosLib source code.
bMsgBoxTaskStop
 [] Used by the generic RtosLib source code.
hTaskId
 [out] Handle of the created task/thread.
hRtosLibApiSync
 [] Used by the generic RtosLib source code.

11.11.2024 Page 173/182

8.1.1.42 RTOSLIB_OS_MSGBOX_TASK_STOP

Wait until the message box task has terminated.

UINT32 RTOSLIB_OS_MSGBOX_TASK_STOP(
 PRTOSMSGBOX_DESC pRtosMsgBoxDesc)

Parameter
pRtosMsgBoxDesc
 [in,out] RTOS message box descriptor.

Return
RTE_SUCCESS on success and an error-code on failure.

Comment
Prior to this call the RtosLib initiated a shutdown of the MsgBoxTask. The adaptation layer should wait
here until the task is finally gone. If after some timeout it is still running an error message should be
generated and the task may be killed.
Note: Currently this function has to return RTE_ERROR on any RTOS. This function is intended only
for the Windows part which is responsible to show a message box sent by the RTOS.

11.11.2024 Page 174/182

8.1.1.43 RTOSLIB_OS_MSGBOX_DISPLAY

Wait until the message box task has terminated.

UINT32 RTOSLIB_OS_MSGBOX_DISPLAY(
 const VMF_MESSAGE_BOX* pVmfMsgBox,
 UINT32* pdwVmfUserReturnCode
);

Parameter
pVmfMsgBox
 [in] VMF message box descriptor, see below
pdwVmfuserReturnCode
 [out] VMF message box user return code representing the user’s reaction on the message

box. The following return codes are defined:
VMF_MESSAGEBOX_IDOK → OK button
VMF_MESSAGEBOX_IDCANCEL → CANCEL button
VMF_MESSAGEBOX_IDABORT → ABORT button
VMF_MESSAGEBOX_IDRETRY → RETRY button
VMF_MESSAGEBOX_IDIGNORE → IGNORE button
VMF_MESSAGEBOX_IDYES → YES button
VMF_MESSAGEBOX_IDNO → NO button

Return
RTE_SUCCESS on success and an error-code on failure.

Comment
Note: Currently this function has to return RTE_ERROR on any RTOS. This function is intended only
for the Windows part which is responsible to show a message box sent by the RTOS.

VMF_MESSAGE_BOX
VMF message box descriptor

typedef struct _VMF_MESSAGE_BOX_A

{

 CHAR tszTitle[VMF_MESSAGEBOX_MAX_TITLE_SIZE];

 CHAR tszMessage[VMF_MESSAGEBOX_MAX_TEXT_SIZE];

 UINT32 bdwMsgValid;

 UINT32 dwFlags;

} VMF_PACKED(1) VMF_MESSAGE_BOX_A;

Description
tszTitle[]
 [in] Message Box title.
tszMessage[]
 [in] Message Box message.
bdwMsgValid
 [] Used by the generic RtosLib source code.
dwFlags
 [in] Message Box flags (currently hard coded flags for Windows).

11.11.2024 Page 175/182

8.1.1.44 RTOSLIB_OS_NOTIFICATION

Notification hook function. This function is called prior to event processing by the application.

UINT32 RTOSLIB_OS_NOTIFICATION(
 UINT32 dwNotificationId)

Parameter
dwNotificationId
 [in] Notification identifier. The following notification identifiers may be generated:

 RTOS_NOTIFICATION_ID_BSOD → Windows BSOD
 RTOS_NOTIFICATION_ID_SUSPEND → Windows Suspend
 RTOS_NOTIFICATION_ID_RESUME → Windows Resume
 RTOS_NOTIFICATION_ID_STOP → Uploader requests RTOS Stop

Return
RTE_SUCCESS on success and an error-code on failure.

Comment
This function is called on specific events. It is only intended for RTOS internal management. For
example, if Windows is going to suspend (RTOS_NOTIFICATION_ID_SUSPEND) the RTOS has to
shut down all its CPU cores and then to call the vmfSuspend() function. If the RTOS supports power
management, these notification hooks may be used to inject the appropriate power events.
The notification hook is called directly after the notification is received (and prior to signaling the event
to the application).
Note: RTOS_NOTIFICATION_ID_SUSPEND and RTOS_NOTIFICATION_ID_RESUME are currently
not supported.

8.1.1.45 RTOSLIB_OS_NOTIFICATION_DONE

Notification done hook function. This function is called after event processing by the application.

UINT32 RTOSLIB_OS_NOTIFICATION_DONE(
 UINT32 dwNotificationId)

Parameter
dwNotificationId
 [in] Notification identifier. The following notification identifiers may be generated:

 RTOS_NOTIFICATION_ID_BSOD → Windows BSOD
 RTOS_NOTIFICATION_ID_SUSPEND → Windows Suspend
 RTOS_NOTIFICATION_ID_RESUME → Windows Resume
 RTOS_NOTIFICATION_ID_STOP → Uploader requests RTOS Stop

Return
RTE_SUCCESS on success and an error-code on failure.

Comment

11.11.2024 Page 176/182

8.1.1.46 RTOSLIB_OS_TIMESYNC_TASK_START

Create and start the time synchronization helper task.

UINT32 RTOSLIB_OS_TIMESYNC_TASK_START(
 PRTOSLIBTIMESYNC_DESC pRtosTimeSyncDesc)

Parameter
pRtosTimeSyncDesc
 [in,out] Time synchronization descriptor, see below.

Return
RTE_SUCCESS on success and an error-code on failure.

Comment
This function has to create and start a new task which is responsible for time synchronization (time,
date, timezone). The task itself is part of the generic RtosLib sourcecode, its entrypoint is defined as
follows: UINT32 RtosLibTimeSyncTask(RTOSLIBTIMESYNC_DESC* pRtosTimeSyncDesc)

RTOSLIBTIMESYNC_DESC
Communication Descriptor

typedef struct _RTOSLIBTIMESYNC_DESC

{

 BOOL bInitialized;

 BOOL bTimeSyncTaskRunning;

 BOOL bTimeSyncTaskStop;

 VMF_HANDLE hTaskId;

 VMF_HANDLE hRtosLibApiSync;

} RTOSLIBTIMESYNC_DESC;

Description
bInitialized
 [] Used by the generic RtosLib source code.
bTimeSyncTaskRunning
 [] Used by the generic RtosLib source code.
bTimeSyncTaskStop
 [] Used by the generic RtosLib source code.
hTaskId
 [out] Handle of the created task/thread.
hRtosLibApiSync
 [] Used by the generic RtosLib source code.

11.11.2024 Page 177/182

8.1.1.47 RTOSLIB_OS_TIMESYNC_TASK_STOP

Wait until the time synchronization task has terminated.

UINT32 RTOSLIB_OS_TIMESYNC_TASK_STOP(
 PRTOSLIBTIMESYNC_DESC pRtosTimeSyncDesc)

Parameter
pRtosTimeSyncDesc
 [in,out] Time synchronization descriptor, see below.

Return
RTE_SUCCESS on success and an error-code on failure.

Comment
Prior to this call the RtosLib initiated a shutdown of the TimeSyncTask. The adaptation layer should
wait here until the task is finally gone. If after some timeout it is still running an error message should
be generated and the task may be killed.

11.11.2024 Page 178/182

8.1.1.48 RTOSLIB_OS_TIMESYNC_TIME_GET

Get and convert the current time and date.

UINT32 RTOSLIB_OS_TIMESYNC_TIME_GET(
 VMF_STAMPED_TIME* pVmfStampedTime
 const UINT32 dwReserved)

Parameter
pVmfStampedTime
 [out] Time and date, see below.
dwReserved
 [in] Currently always set to 0.

Return
RTE_SUCCESS on success and an error-code on failure.

Comment
This function has to determine the current time and date and store it into the VMF_STAMPED_TIME
descriptor.

VMF_STAMPED_TIME
Time and Date descriptor

typedef struct _VMF_TIME

{

 UINT16 wYear;

 UINT16 wMonth;

 UINT16 wDayOfWeek;

 UINT16 wDay;

 UINT16 wHour;

 UINT16 wMinute;

 UINT16 wSecond;

 UINT16 wReserved;

 UINT32 dwNanosecond;

} VMF_PACKED(4) VMF_TIME;

typedef struct _VMF_STAMPED_TIME

{

 VMF_TIME Time;

 UINT64 qwTimestamp;

} VMF_PACKED(4) VMF_STAMPED_TIME;

Description
VMF_TIME.wYear
 Current year:

absolute: 1601 .. 30827
relative: 0

VMF_TIME.wMonth
 Current month (January = 1, December = 12)
VMF_TIME.wDayOfWeek
 Current day of the week (0 = Sunday, 6 = Saturday, 7 = unknown)
VMF_TIME.wDay
 Current day:

absolute: year!=0, day in month (1 - 31)
relative: year=0, n-th occurrence of DayOfWeek in month (1 - 5; 5 equals last!)

VMF_TIME.wHour
 Current hour (0..23)
VMF_TIME.wMinute
 Current minute (0..59)
VMF_TIME.wSecond
 Current second (0..59)

11.11.2024 Page 179/182

VMF_TIME.dwNanosecond
 Current nanosecond (0..999999999)
VMF_STAMPED_TIME.Time
 Current time (see above)
VMF_TIME.qwTimestamp
 RTOS local Timestamp when the time and date was taken

8.1.1.49 RTOSLIB_OS_TIMESYNC_TIME_SET

Set the current time and date.

UINT32 RTOSLIB_OS_TIMESYNC_TIME_SET(
 VMF_STAMPED_TIME* pVmfStampedTime
 const UINT32 dwReserved)

Parameter
pVmfStampedTime
 [in] Time and date.
dwReserved
 [in] Currently always set to 0.

Return
RTE_SUCCESS on success and an error-code on failure.

Comment
This function has to set the time and date stored in the VMF_STAMPED_TIME descriptor.

11.11.2024 Page 180/182

8.1.1.50 RTOSLIB_OS_TIMEZONESYNC_TIMEZONE_GETA

Get the current time zone (ASCII version).

UINT32 RTOSLIB_OS_TIMEZONESYNC_TIMEZONE_GETA(
 VMF_TIMEZONE_A* pVmfTimezone)

Parameter
pVmfTimezone
 [out] Timezone descriptor (all descriptor members are output values!).

Return
RTE_SUCCESS on success and an error-code on failure.

Comment
This function has to determine the current timezone and store it into the VMF_TIMEZONE_A timezone
descriptor.

VMF_TIMEZONE_A
Timezone descriptor

typedef struct _VMF_TIMEZONE_A

{

 VMF_TIME LocalTime;

 BOOL bDaylightTime;

 BOOL bAutoAdjustDSTime;

 INT32 nTimezoneBias;

 CHAR tszStandardName[VMF_TIMEZONE_NAME_MAX_LENGTH];

 VMF_TIME StandardDate;

 INT32 nStandardBias;

 CHAR tszDaylightName[VMF_TIMEZONE_NAME_MAX_LENGTH];

 VMF_TIME DaylightDate;

 INT32 nDaylightBias;

} VMF_PACKED(4) VMF_TIMEZONE_A;

Description
System information
LocalTime
 Current local time/date (when the timezone information was determined)
bDaylightTime
 TRUE if currently daylight saving is on (local time/date (LocalTime) is within given

daylight period, i.e. between StandardDate and DaylightDate)
bAutoAdjustDSTime
 TRUE if this OS automatically adjusts daylight saving
System information
nTimezoneBias
 Timezone bias relative to UTC in minutes (e.g. +60 for Germany/Berlin)
tszStandardName
 Timezone name for standard time (OS specific), when daylight saving is off
StandardDate
 Transition date to standard time (date when daylight saving will be turned off)
nStandardBias
 additional bias used when daylight saving time is off (0 in most timezones)
tszDaylightName
 Timezone name for daylight saving time (OS specific) , when daylight saving is on
DaylightDate
 Transition date to daylight saving time (date when daylight saving will be turned on)
nDaylightBias
 additional bias used when daylight saving time is on (-60 in most timezones)

11.11.2024 Page 181/182

8.1.1.51 RTOSLIB_OS_TIMEZONESYNC_TIMEZONE_GETW

Get the current time zone (wide char version).

UINT32 RTOSLIB_OS_TIMEZONESYNC_TIMEZONE_GETW(
 VMF_TIMEZONE_W* pVmfTimezone)

Parameter
pVmfTimezone
 [out] Timezone descriptor (all descriptor members are output values!).

Return
RTE_SUCCESS on success and an error-code on failure.

Comment
This function is the wide char version of OSTimezoneSyncTimezoneGetA.

8.1.1.52 RTOSLIB_OS_TIMEZONESYNC_TIMEZONE_SETA

Set the current time zone (ASCII version).

UINT32 RTOSLIB_OS_TIMEZONESYNC_TIMEZONE_SETA(
 VMF_TIMEZONE_A* pVmfTimezone)

Parameter
pVmfTimezone
 [in] Timezone descriptor (all descriptor members are input values!).

Return
RTE_SUCCESS on success and an error-code on failure.

Comment
This function has to set the current timezone.

8.1.1.53 RTOSLIB_OS_TIMEZONESYNC_TIMEZONE_SETW

Set the current time zone (wide char version).

UINT32 RTOSLIB_OS_TIMEZONESYNC_TIMEZONE_SETW(
 VMF_TIMEZONE_W* pVmfTimezone)

Parameter
pVmfTimezone
 [in] Timezone descriptor (all descriptor members are input values!).

Return
RTE_SUCCESS on success and an error-code on failure.

Comment
This function has to set the current timezone.

11.11.2024 Page 182/182

8.2 RTOS Library – Application Layer API

The API is described in the RTOS VM User Manual.

8.3 RTOS Library example applications

Shipped with VmfWin are some example applications for VxWorks and Windows CE which show how
to use the RTOS library in a user application. The example applications may serve as a starting point.
The following examples are extracted from the ACONTIS CeWin product (Windows CE + Windows)
…\Examples\RtosLib\CeWin\WinCE
 → Windows CE example applications
…\Examples\RtosLib\CeWin\Windows
 → Windows example applications
The following examples are extracted from the ACONTIS VxWin product (VxWorks + Windows)
…\Examples\RtosLib\VxWin\VxWorks
 → VxWorks example applications
…\Examples\RtosLib\VxWin\Windows
 → Windows example applications

