
1 of 208

acontis technologies GmbH

SOFTWARE

RTOS Virtual Machine

User Manual
Edition: 2021-02-15

15.02.2021 Page 2/208

Content
1 ACONTIS RTOS VIRTUAL MACHINE OVERVIEW .. 5

1.1 SHARED MODE OPERATION ... 5
1.2 EXCLUSIVE MODE OPERATION .. 6

2 VIRTUAL MACHINE FRAM EWORK ... 7
2.1.1 VMF Architecture .. 8
2.1.2 Basic VMF Services (Hardware Abstraction Layer) ... 9

2.2 PORTABILITY ... 10
2.3 VMF MANAGEMENT ANCHOR .. 10
2.4 MEMORY LAYOUT ... 11
2.5 THE RTOS LIBRARY ... 12

3 REAL -TIME DEVICE MANAGEME NT... 13
3.1 OVERVIEW ... 13
3.2 ASSIGN A DEVICE TO A RTOS ... 14

3.2.1 Using System Manager.. 14
3.2.2 Using RtosUpload.exe or RtosLib API .. 15

3.3 INTERRUPT SHARING CONFLICTS ... 16
3.3.1 Principle .. 16
3.3.2 Understanding interrupt conflicts ... 16
3.3.3 Resolving interrupt conflicts ... 18

3.4 CONFIGURATION ... 19
3.4.1 Properties dialog ... 19
3.4.2 RtosUpload.exe / RtosLib API ... 21
3.4.3 Windows INF file ... 21
3.4.4 RTOS config file .. 27

3.5 DRIVER SIGNING ... 28
3.5.1 Driver Package Signing .. 28
3.5.2 Certificate Pre-Installation ... 30

4 RTOS OPERATION MODE .. 32
4.1 SHARED MODE OPERATION (SINGLE CORE) ... 33
4.2 SHARED MODE OPERATION (MULTI CORE) ... 34
4.3 EXCLUSIVE MODE OPERATION .. 35
4.4 SMP EXCLUSIVE MODE OPERATION .. 36
4.5 SMP SHARED MODE OPERATION ... 37

5 RTOS VM CONFIGURATIO N FILES (*.CONFIG FI LES) ... 38
5.1 PROCESSOR CONFIGURATION (RTOS) ... 38
5.2 INTERRUPT PROCESSOR VECTOR RANGES ... 39
5.3 MEMORY CONFIGURATION .. 40

5.3.1 Advantages and disadvantages of different OS memory reservation methods 41
5.4 TIME/DATE AND TIMEZONE SYNCHRONIZATION ... 42

5.4.1 Windows .. 43
5.4.2 RTOS ... 43
5.4.3 Windows / RTOS ... 43

5.5 SECTION [VMF] ... 44
5.6 SECTION [UPLOAD] ... 46
5.7 MULTI PURPOSE SHARED MEMORY .. 48
5.8 OS COMMUNICATION .. 49

5.8.1 Settings .. 49
5.8.2 Enable / Disable Comm Interrupt ... 50
5.8.3 System does not boot using configuring Comm interrupt .. 51
5.8.4 Comm configuration error .. 51
5.8.5 Interrupt conflict ... 52

5.9 RESOURCE DESCRIPTOR TECHNOLOGY (RDT) .. 54
5.10 V IRTUALIZATION TECHNOLOGY (VT) .. 55

6 START/STOP THE RTOS: UPLOADER UTILITY ... 56
6.1 INTRODUCTION .. 56
6.2 UPLOADER OPERATION, COMMAND LINE OPTIONS ... 57

7 RTOS TRAY-ICON APPLICATION (RT OSCONTROL.EXE) .. 59
8 THE RTOS SERVICE APPLICATION (RTOSSERVIC E.EXE) .. 60

8.1 CLOCK CORRECTION ... 60
8.2 DATE AND TIME SYNCHRONIZATION ... 60
8.3 RTOS FILE SERVER FOR RTOSFILE SUPPORT .. 60

15.02.2021 Page 3/208

8.4 RTOS GATEWAY ... 60
9 THE REALTIME OS VIRT UAL NETWORK ADAPTER (RTOSVNET.SYS) 62

9.1 CONFIGURATION ... 62
9.1.1 Windows .. 62
9.1.2 RTOS ... 67

10 THE RTOS LIBRARY ... 68
10.1 RTOS LIBRARY ï APPLICATION LAYER API .. 68

10.1.1 Windows applications ... 68
10.1.2 RTOS applications .. 68
10.1.3 RTOS Library ï initialization and shutdown .. 69
10.1.4 RTOS Library ï events ... 74
10.1.5 RTOS Library ï interlocked data access .. 79
10.1.6 RTOS Library ï shared memory ... 83
10.1.7 RTOS Library ï date and time synchronization (clock synchronization) 88
10.1.8 RTOS Library ï OS scheduling .. 89
10.1.9 RTOS Library ï notification events .. 90
10.1.10 RTOS Library ï uploader API .. 94
10.1.11 RTOS Library ï result value ... 100
10.1.12 RTOS Library ï licensing ... 102
10.1.13 RTOS Library ï file server ... 103
10.1.14 RTOS Library ï files ... 104
10.1.15 RTOS Library ï files advanced (6.1) .. 119
10.1.16 RTOS Library ï generic object functions ... 133
10.1.17 RTOS Library ï message queue functions .. 137
10.1.18 RTOS Library ï pipe functions ... 140
10.1.19 RTOS Library ï socket functions .. 143
10.1.20 RTOS Library ï device functions .. 151
10.1.21 RTOS Library ï memory reservation functions .. 155
10.1.22 RTOS Library ï virtual I/O (VIO) functions ... 156

10.2 RTOS LIBRARY EXAMPLE APPLICATIONS ... 157
10.3 RTOS LIBRARY ï COMPATIBILITY ISSUES FOR VXWIN AND CEWIN 3.5 .. 158

10.3.1 Compatibility mode .. 158
10.3.2 Initialization ... 158
10.3.3 Time/date and timezone synchronization.. 158
10.3.4 Function SetOutputStream ... 158

11 LICENSING ... 159
11.1 EC-MASTER (MAC-ID) ... 159

11.1.1 General ... 159
11.1.2 Required steps .. 159

11.2 CODEMETER ... 160
11.2.1 USB or virtual Dongle .. 160
11.2.2 USB dongle already containing a License .. 160
11.2.3 USB dongle not yet containing a License ... 160
11.2.4 Virtual Dongle .. 162
11.2.5 Update a license ... 164
11.2.6 Sharing a License ... 167
11.2.7 Troubleshooting .. 168

12 RTOSWIN OEM BRANDING ... 169
12.1 GENERAL .. 169
12.2 MODULE SPECIFIC BRANDING ... 169

12.2.1 RtosDrv.sys ... 169
12.2.2 RtosVnet.sys and RTOS_xxx.inf .. 169
12.2.3 RtosService.exe ... 169
12.2.4 RtosControl.exe .. 170
12.2.5 UploadRtos.exe (RTE <=4.x) or RtosUpload.exe (RTE >=5.x) .. 170
12.2.6 RtosPnp.sys... 170

13 WINDOWS UPDATE CONSIDERATIONS .. 171
14 APPENDIX A ï PLATFORMS AND PERFORMANCE .. 176

14.1 REAL TIME BEHAVIOR AND THE RTOS-VM ... 176
14.2 PLATFORM EVALUATION .. 176
14.3 INTEL(R) RESOURCE DIRECTOR TECHNOLOGY (RDT) ... 177

14.3.1 Cache Allocation Technology (CAT) .. 177
14.3.2 Memory Bandwidth Allocation (MBA) ... 180

14.4 REDUCING DMA LATENCY PROBLEMS ... 181

15.02.2021 Page 4/208

14.5 CPU THROTTLING ... 183
14.5.1 Detection .. 183
14.5.2 How to disable .. 184

14.6 SYSTEM MANAGEMENT INTERRUPT (SMI) ... 185
14.6.1 VMF .. 185

15 APPENDIX B ï TROUBLESHOOTING .. 186
15.1 SETUP FAILS .. 186
15.2 SYSTEM DOES NOT BOOT... 187
15.3 COMMON STARTUP PROBLEMS .. 188

15.3.1 IRQ sharing with Windows (10A0) ... 188
15.3.2 Error opening include file (107C) .. 189
15.3.3 Configured RTE memory range not available .. 189
15.3.4 Invalid memory configuration (10A4) .. 189

15.4 WINDOWS CLOCK DELAY ... 190
15.5 WINDOWS NETWORK STACK .. 190
15.6 NETWORK SHARE ACCESS .. 191
15.7 TIMER FREQUENCY ... 192

15.7.1 Setting a dedicated frequency ... 192
15.7.2 Frequency measure error ... 192

15.8 INTERRUPT / TIMER LATENCY .. 193
15.9 V IRTUAL NETWORK ADAPTER PERFORMANCE ... 193
15.10 RTOSL IB EVENT / MSGQUEUE / PIPE / SOCKET PERFORMANCE .. 193
15.11 USING RTOSVM INSIDE A HYPERVISOR .. 193
15.12 REASONS FOR REQUIRED REBOOTS ... 193

16 APPENDIX C ï INSTALLATION .. 194
16.1 OEM INSTALLATION .. 194

16.1.1 CodeMeter User Runtime ... 194
16.1.2 RtE Runtime .. 194

16.2 MANUAL INSTALLATION ... 196
16.2.1 Realtime OS Driver .. 197
16.2.2 Realtime OS Virtual Network Driver .. 199
16.2.3 Product Files .. 201
16.2.4 Debug Console ... 204
16.2.5 Os Image .. 204
16.2.6 CodeMeter Runtime Environment .. 204
16.2.7 First Start of an OS .. 205
16.2.8 Product specific additionals steps .. 207

17 VERSION HISTORY ... 208

15.02.2021 Page 5/208

1 ACONTIS RTOS Virtual Machine Overview

The ACONTIS RTOS-VM provides a light-weight real-time virtualization platform for Windows.
On top of this platform either real-time firmware, custom or off-the-shelf real-time operating systems
can be executed.
When using multicore CPUs one can choose between two general operation modes. A more detailed
description about possible operation modes can also be found in section 4.

1.1 Shared Mode Operation

Windows shall run on all CPU cores and only one CPU core shall additionally run the real-time
software. If the Windows application needs a lot of CPU power (e.g. for image processing) this will be
the appropriate operation mode even on multi-core CPUs. In shared mode operation Windows (on this
core) will usually only get CPU time when the real-time software is idle.

The following diagram illustrates the flow of control:

Windows
Real-time

Tasks

Real-time

ISR

¢¡

£

Realtime IRQ

Windows Real-time SoftwarePriority of Execution

IR
Q

Operating states of the RTOS-VM in shared mode
¡ Exception-handling or a higher priority interrupt becomes outstanding.

¢ Interrupt Service Routine optionally starts a new task and then finishes.

£ From the idle-state, VxWorks transfers control to Windows operating system.

Note: When running the RTOS-VM in shared mode on multiprocessor/multicore systems this state
diagram is only applicable for one CPU core in the system (by default on the first core). All other CPU
cores will run Windows only.

15.02.2021 Page 6/208

1.2 Exclusive Mode Operation

Windows and the real-time software shall run fully independently on different CPU cores. Using this
mode will lead to much shorter interrupt and task latencies as there is no need to switch from
Windows to the real-time software.

The following diagram, illustrates the flow of control on a dual core system:

Core 1:

Windows

Core 2:

Real-time

Software

Real-time

Tasks

Real-time

ISRs

¢¡

Realtim
e IRQ

Windows

Processes

Windows

ISRs,

DPCs

¢¡

W
indows IRQ

Operating states of the RTOS-VM in exclusive mode
¡ Exception-handling or a higher priority interrupt becomes outstanding.

¢ Interrupt Service Routine optionally starts a new task and then finishes.

Note: When running the RTOS-VM in exclusive mode Windows will never be interrupted. Application
and interrupt processing run concurrently and independently on both CPU cores. There is no need in
the real-time software to enter the idle state.

15.02.2021 Page 7/208

2 Virtual Machine Framework
Using the ACONTIS RTOS-VM there is no need to understand the complex hardware of modern PC
systems. The basic hardware components of the PC (architecture specific processor registers, timer,
interrupt controller, memory handling/partitioning) can be accessed in the real-time software by simply
calling the appropriate functions that the RTOS-VM hardware abstraction layer (HAL) provides.
Besides the HAL functions the RTOS-VM provides additional services, especially for communication
with Windows:

¶ Shared Memory: Direct access to shared memory areas

¶ Shared Events: Notification using named events

¶ Data Access Synchronization: Interlocked Data Access

¶ Date and Time Synchronization

¶ Virtual Serial Channel

¶ Network Packet Library: basic Ethernet data transfer service

¶ RTOS configuration services (e.g. for dynamically setting the IP address of the virtual network)
The application interface between the real-time software and the RTOS-VM is called the Virtual
Machine Framework (VMF).
When calling VMF hardware functions the hardware will be directly accessed and not emulated. These
functions are called the VMF Hardware Abstraction Layer (HAL) functions.

When using a product from the RTOSWin product family calling VMF functions is normally not
necessary. Calling framework functions is done in the RTOS adaptation for the RTOS Virtual Machine
(usually the Board Support Package).

15.02.2021 Page 8/208

2.1.1 VMF Architecture

The following figure shows the general architecture of the VMF when a RTOS is embedded within
Windows. Besides the basic VMF API (the HAL) which usually is required to build a RTOS BSP
(Board Support Package) the VMF contains functions for communication between Windows and the
RTOS (e.g. shared memory, events, network packet library). On top of the network packet library a
virtual network driver can be built which will then provide a virtual network connection between
Windows and the RTOS.

VMF Binary Module

Windows

RTOS driver

Realtime Operating System (RTOS)

RTOS

Image

RTOS

Virtual Network driver

Board Support Package

Basic VMF API (HAL)
RTOS Processor

Dependent Part for x86

TCP/IP Stack

RTOS

Bootloader

Uploader DLL

User Application

Embedded Application

RTOS-Library-

Interface

Virtual Network Driver

Network Packet

Library

S
o

c
k

e
ts

RTOS-Library

(Communication)

BASIC VMF

(Hardware Abstraction

Layer)

O
S

 s
w

it
c

h
in

g

M
P

 t
e

c
h

n
o

lo
g

y

S
h

a
re

d
 M

e
m

o
ry

,
E

v
e

n
ts

15.02.2021 Page 9/208

2.1.2 Basic VMF Services (Hardware Abstraction Layer)

The basic VMF services provide a simple programming interface to access the otherwise complex PC
hardware.
The following figure shows in more detail the basic VMF services which usually are used within a
RTOS Board Support Package.

Processor(s)
Processor(s)

Board Support Package

VMF Binary Module

System

Timer

Auxiliary

Timer

Interrupt

Controller

PIC

APIC/IOAPIC(s)

Timer Hardware

(e.g. 8254)

Interrupt

Manage-

ment

Cores,

Processor(s)

Multi-Core

Management

for SMP and AMP

systems

Enter RTOS:

Boot, Interrupt

Leave RTOS:

(Shared Core only)

Idle, Force Idle

Memory (RAM)

Memory

Management

Partitioning,

Shared Memory

BASIC VMF API (HAL functions)

Devices

PCI/PCIe/Legacy

Device

Management

Timer

Management

When adapting a RTOS to run with the ACONTIS RTOS-VM there is no need to directly access PC
hardware like timers or interrupt controllers.
The VMF as well provides a generic method for booting the RTOS and for setting up the RTOS
memory context (virtual memory).
When running on multi-core systems the VMF also provides methods for executing a RTOS which
supports Symmetric Multiprocessing (SMP).
Summarized, using the VMF one gets the following advantages:

¶ Fully virtualized hardware access (via Hardware Abstraction Layer functions). No need to

understand the complex PC hardware.

¶ Either run the RTOS and Windows together on one single core or use dedicated cores

exclusively for each operating system.

¶ The same RTOS image can be run either on a shared or a non-shared CPU core.

¶ Sophisticated Multi Core Support

o Run the RTOS on one single or on multiple cores (SMP)

o A RTOS can run in SMP mode even on dual core CPUs

15.02.2021 Page 10/208

2.2 Portability

When using standard frameworks or libraries the customer usually gets either source-code which in a
first step would have to be ported to his specific environment (operating system, compiler, linker).
In cases where the supplier of such a framework/library does not want to ship the source-code the
customer would have to wait until a version for the framework/library is available for his environment.
To avoid these implications the ACONTIS VMF is not shipped as a library or source code but as a
relocatable binary module. This binary module will be loaded by the ACONTIS RTOS-VM at an
arbitrary location in the memory (the VMF code can be executed at any location in memory!).
Every call to a VMF function will then be redirected via well-known locations inside a jump table, this
jump table is stored at a well-defined location inside the binary module.
Thus, there is no need to port one single line of C language or assembly language code (and no need
to add the VMF as an additional library to the customerôs environment).
The only requirement is to include one single header file. Within this header file the VMF functions are
simply defined as macros which call the appropriate functions using the function pointer in the jump
table.

VMF Binary Module (relocatable)

VMF fuctions (relocatable: can be executed at an arbitrary location in memory)

Pointer to Function 1

Pointer to Function 2

Pointer to Function n

System Software (RTOS Board Support Package)

Function 1

Function 2

Function 3

Summarized, using the VMF binary module leads to the following advantages:

¶ No porting necessary, just include a C header file.

¶ No change necessary in the system software when new VMF versions are released (just
exchange the binary module by the new one).

¶ The same binary VMF module will be used together with different RTOSes; this ensures a
higher quality than if the VMF code would have been ported individually for any RTOS.

2.3 VMF management anchor

Some information about the VMF is needed within the RTOS, e.g. the physical base address of the
framework binary image. This data is located at a specific location inside the RTOS memory.
After loading the RTOS image into the memory the uploader will copy the VMF management data at
the appropriate location inside the RTOS memory

15.02.2021 Page 11/208

2.4 Memory Layout

VMF = Virtual Machine Framework
RTOS Framework = RTOS interface (VMF interface functions)

RTOS memory

RTOS 2
(QNX)

EntryPoint
G_oVmfFmwkAnchor

Windows

Framework, vmf.bin
(VMF binary image)

Virtual network adapter
RtosVnet

RTOS 0
(VxWorks)

EntryPoint
G_oVmfFmwkAnchor

RTOS 1
(Windows CE)

EntryPoint
G_oVmfFmwkAnchor

Uploader/RtosDrv

Multi purpose

Shared memory

1 ï The RTOS memory area (orange) will not be used by
Windows

2 ï The Uploader (RTOS Bootloader) copies the VMF
binary image (Framework) file vmf.bin into an area
allocated by Windows (blue). The RTOS image is copied
into the RTOS memory (orange).

3 ï At a specific location in the RTOS area (the anchor,
G_oVmfFmwkAnchor) some basic VMF information is
located, among other information the uploader will store
the physical base address of the VMF image here.

4 ï After loading the RTOS image into memory the
uploader will enter the RTOS boot entrypoint.

5 ï The RTOS kernel will then boot. All memory areas
needed by the VMF (Internal / User Shm, virtual network,
LocalAPIC, IoAPICs etc.) will have to be mapped by the
RTOS.

RtosMemoryStartAddress

RtosEntryPointOffset
RteFmwkAnchorOffset

RtosMemoryStartAddress

RtosEntryPointOffset
RteFmwkAnchorOffset

RtosMemoryStartAddress

RtosMemorySize
RtosEntryPointOffset
RteFmwkAnchorOffset

Multi Purpose Shared
Memories

RteMemorySize
RteMemoryStartAddress

RtosMemorySize

RtosMemorySize

[Rtos2]

[Rtos1]

[Rtos]

[Upload]

[SharedMemory\...]
"Size"=dword:é

15.02.2021 Page 12/208

2.5 The RTOS Library

VMF communication service functions (e.g. for shared events) only provide basic services without any
synchronization, some of them also have to be called within a well-defined memory context (ring 0
context, kernel context).
The Windows/RTOS communication services are therefore summarized within the RTOS library which
is based on VMF services. This library is split into two parts, an OS independent part and an OS
dependent part.
Synchronization (e.g. interrupt locking or mutexes) are part of the OS dependent part.
A detailed description of the RTOS library can be found in chapter 9.

15.02.2021 Page 13/208

3 Real-time Device Management

3.1 Overview

To achieve real-time behaviour the RTOS will have to directly access its hardware devices. In fact,
hardware devices are never emulated, neither in Windows nor in the RTOS. Every specific device,
e.g. a PCI network adapter card will, then either be used by Windows or by the RTOS exclusively.

In Windows all hardware devices which shall be used by the RTOS have to be managed by the
generic Windows RtosPnp driver shipped with the ACONTIS RTOS-VM. It will forward all required
information to RTOS.
In RTOS a device specific driver will be required.

Within the Windows Device Manager all RTOS devices will then appear in the ñRealtime OS Devicesò
tree:

For the RTOS the Virtual Machine Framework (VMF) provides several methods to detect whether a
device is assigned and usable or not:

- vmfIdGetByName(szDeviceName, VMF_ID_DEVICE, é) : search by Name
- vmfDevicePciIsForRtos(nBus, nDevice, nFunction, é) : search by PCI address
- vmfDeviceIoIsForRtos(dwIoPort, é) : search by IO-Port
Older methods:
- vmfDeviceIsForRtos(szDeviceName, é) : search by Name
- vmfDeviceInterruptIdFromName(szDeviceName, é) : search by Name

More information about these functions can be found in the VMF documentation.
Usually the RTOS adaptation (e.g. the Board Support Package) for the RTOS-VM uses these
functions internally. A RTOS user application normally doesnôt need to call these functions. More
information can be found in the corresponding documentation (e.g. in the VxWin, CeWin, QWin or
Rtos32Win/RtVmf documentation).

15.02.2021 Page 14/208

3.2 Assign a device to a RTOS

3.2.1 Using System Manager

The System Manager can be used to assign a device to a RTOS.
There are three different types of assignment:

1) ñLegacy Interrupt Enabledò
The device will be configured to use a physical interrupt line.
Advantage:
- No PCI bus access required to enable or disable the interrupt
Disadvantage:
- Interrupt conflicts when another card uses the same interrupt line.

2) ñMSI Enabledò
This option can be used for PCIe cards supporting Message Signalled Interrupts.
Advantage:
- No interrupt conflicts
Disadvantage:
- Enabling or disabling the interrupt requires PCI bus access.

3) ñInterrupt Disabledò
This option can only be used in combination with a specialized driver supporting polling mode.
The acontis EC-Master Link Layers for example are such.
Any regular network driver instead will always require an interrupt to work.
Advantage:
- No interrupt conflicts and no PCI bus access
Disadvantage:
- Special driver required

When assigning a device to RTOS it is possible Windows asks how to continue.
Please select ñInstall this driver software anywayò to continue.

Such a message can be prevented by providing a signed driver package, as described in chapter ñ3.5
Driver Signingò.

15.02.2021 Page 15/208

In case a reboot is required please reboot the system to continue.

After the device was assigned successfully it can be found below RTOS.

In case of starting the RTOS now brings up an interrupt conflict error please check chapter ñ3.3
Interrupt sharing conflictsò for possible solutions.

3.2.2 Using RtosUpload.exe or RtosLib API

Device assignment can also be done

- by calling RtosUpload.exe using the option ñ/deviceò
Ą see chapter ñ6.2 Uploader operation, command line optionsò

- programmatically using RtosLib function ñRtosDeviceò
Ą see RtosDevice() API at chapter ñ10.1.20 RTOS Library ï device functionsò

15.02.2021 Page 16/208

3.3 Interrupt sharing conflicts

3.3.1 Principle

When a physical device shall be controlled by the RTOS it will be under direct control of the RTOS.
There is no virtualization of any physical device and no interference by the RTOS Virtual Machine.
Thus, the regular device driver provided by the RTOS can be used (e.g. a network driver, USB driver,
IEEE1394 driver, é).
Usually the device driver will:

a) read and/or write to device memory areas
b) read and/or write to device I/O areas
c) handle device interrupts

In case the device generates an interrupt, the driverôs interrupt handler is responsible to acknowledge
and handle the interrupt.

Important:
The same interrupt may never be used by both operating systems, Windows and the RTOS.

But why not?
Example: an Intel PRO/100 network adapter card that is using interrupt 20 shall be controlled by the
RTOS and an USB host controller device which is used by Windows is also using interrupt 20.
In that case, every time the USB host controller generates an interrupt the RTOS interrupt handler for
the Intel PRO/100 network adapter card would be called (real-time interrupts have a higher priority
than Windows interrupts). This handle is not capable to acknowledge and handle the interrupt of the
USB host controller. One could now transfer control back to Windows to let the corresponding
Windows handler process the interrupt. But in that case the real-time behaviour of the system would
be violated. So, there is no way to both share interrupts between Windows and the RTOS and
guarantee deterministic real-time behaviour for the RTOS.

3.3.2 Understanding interrupt conflicts

In order to understand and finally prevent interrupt conflicts between several PCI cards, the physical
arrangement of these cards should be carefully considered.
Each PCI board may generate up to four hardware interrupts on four physical interrupt lines (INTA,
INTB, INTC and INTD). In most IBM-compatible PCs, each of the four interrupt lines on the PCI-bus is
hard-wired to the next interrupt position, offset by one, in the neighbouring slot. This means that INTA
of slot 1 is (typically) hard wired to INTB of slot 2, and to INTC of slot 3, and to INTD of slot 4.
Repeating this pattern, it is also wired to INTA of slot 5, and so on.
Since PCI card manufacturers generally lay out their boards to assert an interrupt on just one line
(INTA), this has the affect of forcing the A-level interrupts of four adjacent cards to assert physically on
INTA, INTB, INTC and INTD. In accord with this scheme, a fifth adjacent card would also assert its
INTA on the same line as the first card. The next screenshot illustrates this principle.
Caution: Multi-function PCI boards may use more than one interrupt line.

But even when two PCI devices use different physical interrupt lines, they may be hard-wired together

by the PCôs interrupt router. The interrupt router maps various physical interrupt lines to the inputs of

the Programmable Interrupt Controller.

15.02.2021 Page 17/208

The inputs of the interrupt router are the physical interrupt lines (refer to screenshot). The output of the

interrupt router is connected to the interrupt controller of the PC. How many of the physical interrupt

lines will be gathered together by the interrupt router depends on both the interrupt router and the

number of free interrupts available at the Programmable Interrupt Controller.

If you desire, you can increase the number of free interrupt lines by using the BIOS to disable some
PC components: COM ports, USB controller, or Audio/Sound controller, for example.
The number of output lines the interrupt router provides depends on the PC hardware (chipset). If the
interrupt router has a small number of output lines, it is quite likely that you will discover that several
physical interrupts have been wired to a common interrupt on the controller.

Problems with sharing interrupts:
PCI devices that interrupt along the same interrupt pin route have no choice but to share an interrupt.
The routing of interrupt pins to an interrupt router is system (chipset) dependent. While in many cases,
finding and isolating the desired interrupt lines is not much of a problem, experience has nonetheless
shown that it is not at all possible in some PCs to separate the interrupt lines as required by the
RTOSWin solution.

Assume that Device A (installed under Windows) physically shares an interrupt with device B (installed
under the RTOS). If Device A generates an interrupt while the RTOS is running, how could interrupt-
handling software process the interrupt without impairing the ability of the real-time system to fulfil its
tasks within prescribed times?

One might be tempted to solve this problem in either of the following ways:

¶ Disable the interrupt in the interrupt controller and re-enable it only when the RTOS returns to
its idle state and returns control to Windows. Using this approach, however, interrupts
generated from device B would also be blocked for some time, a circumstance that would not
be acceptable for real-time operations.

¶ By implementing an appropriate RTOS interrupt handler, one could prevent Device A from
generating an interrupt until after the RTOS returned to Windows. Thereafter, the interrupt
intended for Windows could be handled. While this theoretically could solve the dilemma,
there could be no way to handle this in a general fashion. Requiring an intelligent real-time
interrupt handler to be written for each device that shares an interrupt with a Windows device
would very likely mean that the Windows device driver (depending on the device) would have
to be modified, too. For this reason, this approach does not provide an adequate solution for
handling shared interrupts either.

The foregoing scenarios can lead to but a single conclusion: In a dual system, such as the RTOSWin
solution, Interrupt-sharing between Windows and the RTOS must be prohibited.
And that implies that PCI cards that are controlled by the RTOS may not be plugged into a PCI slot
that uses the same hard-wired interrupt line (normally INTA) as does either an external or internal
Windows device.
Conclusion: Windows devices can share Windows interrupts and RTOS devices can share RTOS
interrupts, but never can interrupts be shared across the two operating systems.

Fortunately, most of the time, system designers can eliminate interrupt conflicts.

If it were possible to identify an otherwise unused interrupt pin route to real-time devices, the RTOS
could manage multiple interrupts along that route via interrupt sharing.

Custom boards that provide a means for specifying on which of the interrupt pins ï INTA#, INTB#,
INTC#, or INTD# ï the boardôs interrupts should be asserted, very well suit the scheme of having
multiple-function or single-function PCI devices sharing an interrupt. Such boards allow great flexibility
in combining devices that require real-time servicing with those that do not.

15.02.2021 Page 18/208

3.3.3 Resolving interrupt conflicts

Prior to start resolving interrupt conflicts the device has to be under control of the RTOS. This has to
be done by installing the RtosPnp Device Driver (see section 3.4). This driver will request an exclusive
interrupt from the Windows Resource Manager. If no other device requests an exclusive interrupt and
if the hardware (motherboard, chipset) is also capable of providing an exclusive interrupt then a
unique interrupt will be assigned for this device.

If this fails, there are several ways how to resolve interrupt conflicts then.

a) Try to find another slot where to insert the PCI/PCIe card.
b) If capable then configure the device to use message signalled interrupt (MSI) instead (see

section 3.4.3.3)
c) Disable all unused devices in the BIOS
d) Disable the conflicting Windows device either by disabling it in the BIOS or by disabling it in

the Windows Device Manager.

In case your RTOS device driver does not use interrupts (i.e. if used polling) you may configure the
device using polling mode. This can be either done by the System Manager, RtosUpload.exe, RtosLib
RtosDevice() or by modifying the standard Windows INF file that is used to assign the device to the
RTOS. See section 3.4.3.3 for more information.

Sometimes a Windows device is assigned an interrupt but the device never generates an interrupt.
For example, in many cases the SMBus device doesnôt generate interrupts even if it is assigned one.
In that case you may also ignore interrupt conflicts. But it is also necessary to modify the standard
Windows INF file that is used to assign the device to the RTOS. See section 3.4.3.5 for more
information.

15.02.2021 Page 19/208

3.4 Configuration

3.4.1 Properties dialog

Using the Windows Device Manager, it is possible to change the device configuration parameters.
The meaning of the parameters is identical to the corresponding settings in section
[DriverInstall_HwAddRegUsrDef] in the INF file of the driver (see section 3.4.2).

Rte Device Configuration parameter Corresponding entry in [DriverInstall_HwAddRegUsrDef]

OS Id OsId

Device Type DeviceType

Pci Bus Id PciBus

Device Id PciDevice

Function Id PciFunction

PIN PciPin

15.02.2021 Page 20/208

Interrupt Source Configuration

Rte Device Configuration parameter Corresponding entry in [DriverInstall_HwAddRegUsrDef]

Type InterruptType

Trigger Mode InterruptTriggerMode

Polarity InterruptPolarity

No Disable On Stop InterruptDontDisableOnRtosStop

Interrupt Inactive InterruptDoesntInterrupt

Register Interrupt InterruptRegisterToWindows

Request Mode InterruptRequestMode

Target Address Type InterruptTargetAddressType

Target Address Value InterruptTargetAddress

Target Processor Vector InterruptProcessorVector

Raw Interrupt Resources Windows internal information (read only)

Translated Interrupt Resources Windows internal information (read only)

15.02.2021 Page 21/208

3.4.2 RtosUpload.exe / RtosLib API

The RtosUpload.exe option ñ/deviceò and RtosLib API ñRtosDevice()ò allows the modification of some
device configuration values like interrupt mode, device name and OS id using parameter
órte_configureô.
See RtosDevice() API at chapter ñ10.1.20 RTOS Library ï device functionsò for details

3.4.3 Windows INF file

When a device should be assigned to RTOS a Windows INF file is required to install the generic
RtosPnp driver for Windows so the device information can be forwarded to RTOS.

There are several RtosPnp INF files shipped with the product, but under some circumstances it is
required to create a new file:

- Support a new device and prevent the ñWindows Security Warningò during driver installation

- An option should be changed to another default (for example always using polling mode) so
no re-configuration is required after assigning the device

After creating or modifying an INF file it must be signed to prevent the ñWindows Security Warningò
during driver installation ï see chapter ñ3.5 Driver Signingò for details.

3.4.3.1 Supporting a new device

In most cases the template INF file has only to be adjusted by a few changes.

3.4.3.1.1 Device Names

The device name has to be adjusted, optionally several additional name string may be adjusted.

Template INF file:
[Strings]

DEVICEDISPLAYNAME = "RTOS Device Name" ; (r)

DEVICECLASSNAME = "Realtime OS Devices" ; (o)

MFGNAME = " acontis technologies GmbH" ; (o)

INSTDISKNAME = " acontis technologies GmbH Installation Disc" ; (o)

SERVICEDISPLAYNAME = "RTOS PnP Driver" ; (o)

SERVICEDESCRIPTION = "RTOS PnP Driver" ; (o)

Example adjustments (device name and company name):
[Strings]

DEVICEDISPLAYNAME = "My PCI Card" ; (r)

DEVICECLASSNAME = "Realt ime OS Devices" ; (o)

MFGNAME = "My Company" ; (o)

INSTDISKNAME = "My Company Installation Disc" ; (o)

SERVICEDISPLAYNAME = "RTOS PnP Driver " ; (o)

SERVICEDESCRIPTION = "RTOS PnP Driver" ; (o)

3.4.3.1.2 PCI Device Identifications

A PCI device is uniquely identified by at least two identifiers: the Vendor ID (e.g. 8086 for Intel) and
the Device ID (e.g. 1229 for the Intel PRO/100 device).
Some PCI devices belong to a device family (for example the Intel PRO/1000 family). In this case the
same INF file may be used by several such devices.
The [DeviceList] section in the INF file contains at least entry with the appropriate vendor and device
id.

Template INF file:
[DeviceList]

%DEVICEDISPLAYNAME% = DriverInstall, PCI \ VEN_FFFF&DEV_FFFF ; (r)

Example adjustments (two devices with vendor id ABCD and device ids 1234 and 5678):
[DeviceList]

%DEVICEDISPLAYNAME% = DriverInstall, PCI \ VEN_ABCD&DEV_1234 ; (r)

%DEVICEDISPLAYNAME% = DriverInstall, PCI \ VEN_ABCD&DEV_5678 ; (r)

15.02.2021 Page 22/208

3.4.3.2 Forcing the RtosPnp driver to be loaded ï determine interrupt sharing conflicts

In case the device which shall be controlled by the RTOS (using the RtosPnp driver) shares its
interrupt with another device that is controlled by Windows two scenarios may occur:

a) The Windows Device Manager successfully loads the RtosPnp driver
b) The Windows Device Manager refuses to load the RtosPnp driver

The reason why sometimes the driver is not loaded is an entry in the INF file that forces the Windows
Resource Manager to assign a unique interrupt to the device. If Windows cannot find a unique
interrupt then it may not load the driver.
To avoid this behavior the entry in the INF file has to be changed in a way that the Windows Resource
Manager is allowed to assign an interrupt that is already used by another device.

There are several ways to change the interrupt mode to MSI:

- By modifying the devices Windows INF file to change the installation default:

Template INF file (by default the entry is not existing which means device exclusive):
[DriverInstall_HwAddRegUsrDef]

;HKR," ConfigInterrupt0 ", "Interr uptRequestMode", %REG_DWORD %, 0x00

; (o) 0 0=exclusive, 0 1=shared

Required adjustment (uncomment and set the value to 0x01):
[DriverInstall_HwAddRegUsrDef]

HKR," ConfigInterrupt0 ", "InterruptRequestMode", %REG_DWORD%, 0x0 1

; (o) 00=exclusi ve, 01=shared

After adjusting the INF file a driver update with the new INF file has to be executed.

- Using the Windows device manager
Select the RTOS device driver, open device properties, select the tab ñRte Device
Configurationò, select and click ñInterrupt Configurationò and change ñRequest Mode (Default)ò
from ñExclusiveò to ñSharedò. At last click ñOKò and reboot to update the settings.

3.4.3.3 Use message signalled interrupt (MSI) to solve interrupt conflicts

If a device and the chipset are capable of using message signalled interrupts (MSIs) a RTOS
controlled PCI device can be configured to use MSI instead of a line interrupt.
This solves interrupt conflicts often caused by the classic line interrupt.
The advantage of MSI instead of classic line interrupt is that it needs not to be shared with other
devices. The line interrupt is a wire connecting multiple slots on the mainboard and so the same wire
might be shared by multiple cards. MSI on the opposite uses the PCI bus address and data lines to
generate an interrupt message. The only limit for exclusivity on MSI is the number of available CPU
interrupt vectors.

In case a device is configured to use MSI but it does not support MSI an error message will be shown
as soon as the driver wants to enable the interrupt.

A device can be configured for using MSIs either by modifying the inf file before the device driver
installation or by changing the device configuration using the Windows device manager after the
installation.

There are several ways to change the interrupt mode to MSI:

- In the System Manager device options
- By using RtosDevice() API directly or by RtosUpload.exe ï see RtosDevice() API for details!
- By modifying the devices Windows INF file to change the installation default:

Template INF file:

[Drive rInstall_HwAddRegUsrDef]

;HKR,"ConfigInterrupt0", "InterruptType", %REG_DWORD%, 0xFFFFFFFE

Required adjustment:
[DriverInstall_HwAddRegUsrDef]

HKR,"ConfigInterrupt0", "InterruptType", %REG_DWORD%, 0x04

15.02.2021 Page 23/208

- Using the Windows device manager

Select the RTOS device driver, open device properties, select the tab ñRte Device
Configurationò, select and click ñInterrupt Configurationò and change ñType (Default)ò from
ñAutodetectò to ñMSIò. At last click ñOKò and reboot to update the settings.

3.4.3.4 RTOS controlled PCI devices not using interrupts

Sometimes the RTOS device driver that controls the PCI device does not require to handle interrupts
from this device.
In such cases it is possible that other devices which are controlled by Windows are allowed to use the
same interrupt line as the RTOS device would use ï normally it is not allowed that the same interrupt
line is used by both, Windows and the RTOS (see section 3.2).

There are several ways to change the interrupt mode to polling:

- In the System Manager device options
- By using RtosDevice() API directly or by RtosUpload.exe ï see RtosDevice() API for details!
- By modifying the devices Windows INF file to change the installation default:

Template INF file:
[DriverInstall_HwAddR egUsrDef]

;HKR," ConfigInterrupt0 ", "InterruptDoesntInterrupt", %REG_DWORD%, 0x00

Required adjustment:
[DriverInstall_HwAddRegUsrDef]

HKR," ConfigInterrupt0 ", "InterruptDoesntInterrupt", %REG_DWORD%, 0x01

After adjusting the INF file a driver update with the new INF file has to be executed (see
section 16.2.1 Realtime OS Driver).

15.02.2021 Page 24/208

3.4.3.5 RtosPnp driver Windows INF file parameters

This section describes all Windows INF file parameters of the RtosPnp driver that can be adjusted to
fit to specific requirements. Shipped with the RTOSWin solution are some pre-defined INF files and
two template INF files, RTOS_Template.inf (template for one PCI device configuration) and
RTOS_MFC_Template.inf (template for multiple PCI device configurations).

3.4.3.5.1 Section [DriverInstall_HwAddReg]

¶ FriendlyName
If this entry exists it will override any automatically generated device friendly name. Normally
the deviceôs friendly name will be automatically generated by the RTOS Device Class Installer
(RtosPnpInstaller.dll), this name is based on the DEVICEDISPLAYNAME defined in section
[Strings].

3.4.3.5.2 Section [Strings]

¶ DEVICEDISPLAYNAME
Will be displayed as device name (in the Windows Device Manager)

¶ DEVICECLASSNAME
Will be displayed as the device class name (in the Windows Device Manager)

¶ MFGNAME
Manufacturer name

¶ INSTDISKNAME
Name of the installation resource

¶ SERVICEDISPLAYNAME
Name of the driver

¶ SERVICEDESCRIPTION
Description of the driver

3.4.3.5.3 Section [RteInstall]

¶ AutoDeviceFriendlyName
The RTOS Device Class Installer uses this entry to determine how to create the deviceôs
friendly name (which is shown in the Windows Device Manager).
Bit 0: create a friendly name if set to 1 (otherwise DEVICEDISPLAYNAME will be used by
Windows)
Bit 1: if set to 1 then append the DOS device (COMx, LPTx)
Bit 2: if set to 1 then append a unique ID (assure that all device names are unique)

15.02.2021 Page 25/208

3.4.3.5.4 Section [DriverInstall.RteInstall]

¶ MatchBusDevFunc = 0xFFFFFF00
this INF file will only be valid for PCI devices which are matching the given pattern.
Value pattern 0xBBDDFFUU:
ï BB = PCI bus index
ï DD = PCI device index
ï FF = PCI function index
ï UU = unused (reserved)
If the value for BB, DD or FF is set to 0xFF then all such devices will match, otherwise only the
specified one will match.
Example: 0xFFFF0100 Ą only the PCI device with function 01 will match (bus and device
donôt care).
This entry is required in case that two identical PCI cards shall be controlled by the RTOS and
different settings in the INF file shall be used (e.g. one device generates an interrupt and the
second does not). In this case either two different INF are required or one INF file with two
different configurations has to be created.

3.4.3.5.5 Section [DeviceList]

This section contains at least one condition which PCI device shall use the RtosPnp driver. The PCI
device is determined by its PCI vendor and device ID. If more than one PCI device shall use the
RtosPnp driver then multiple of these entries have to be made.

¶ %DEVICEDISPLAYNAME% = DriverInstall, PCI\VEN_XXXX&DEV_YYYY
PCI devices with vendor id XXXX and device id YYYY will use this INF file.

15.02.2021 Page 26/208

3.4.3.5.6 Section [DriverInstall_HwAddRegUsrDef]

¶ OsId

determines the OS the device should be assigned to: FFFFFFFE=auto,

FFFFFFFD=OsIdependent FFFFFFFC=Host(Windows), else =value

¶ DeviceType
determines the device type: FFFFFFFE=auto, 00=other, 01=virtual, 02=PCI

¶ PciBus
determines the PCI bus index value: FFFFFFFE=auto, FFFFFFFF=unused, else=value

¶ PciDevice
determines the PCI device index value: FFFFFFFE=auto, FFFFFFFF=unused, else=value

¶ PciFunction
determines the PCI function index value: FFFFFFFE=auto, FFFFFFFF=unused, else=value

¶ PciPin
determines the PCI interrupt pin value: FFFFFFFE=auto, FFFFFFFF=unused, else=value

¶ ConfigInterrupt0
These entries describe the source of the first interrupt on the device. If a device is capable to
generate more than one interrupt (e.g. PCIe devices using MSIs) then additional
ConfigInterruptX entries exist (ConfigInterrupt1, ConfigInterrupt2, é)

o InterruptType
FFFFFFFE=auto detect, normally you should not change this value
(00=Pic, 01=IoApic, 02=LocalApic, 03=IPI, 04=MSI, 05=Virtual)

o InterruptTriggerMode
FFFFFFFE=auto detect (PCI = level, legacy = edge)
00: set to level triggered
01: set to edge triggered

o InterruptPolarity
FFFFFFFE=auto detect (PCI = low/falling, legacy = high/rising)
00: low level when level triggered or falling edge when edge triggered
01: high level when level triggered or rising edge when edge triggered

o InterruptDontDisableOnRtosStop
0: disable interrupts after the RTOS is stopped (to avoid system crash)
1: don't disable interrupt on RTOS stop (requires a handler on Windows)

o InterruptDoesntInterrupt
0: device generates interrupts
1: device doesnôt generate interrupts (allow interrupt sharing with Windows)

o InterruptRegisterToWindows
0: donôt register a interrupt handler to Windows
1: register a interrupt handler to Windows (normally this is required if the device
generate interrupts)
Note: if InterruptDoesntInterrupt is set to 1 no handler will be registered, the value set
for InterruptRegisterToWindows is ignored

o InterruptRequestMode
00: exclusive
01: shared
Note: if InterruptDoesntInterrupt is set to 1 the value set for InterruptRequestMode is
ignored

o InterruptTargetAddressType
FFFFFFFE=auto detect, normally you should not change this value
00=Processor bit mask,
01=Local Apic Id,
02=Logical Id (Flat),
03=Logical Id (Cluster)
Currently only the Local APIC is supported (value 01)!

o InterruptTargetAddress
Interrupt target address, meaning depends on InterruptTargetAddressType
(01 = local APIC ID, this value will be determined automatically)

o InterruptProcessorVector
Interrupt vector to be used.
FFFFFFFE=auto detect
00 .. FF: manually determined interrupt vector
The following restrictions for the interrupt vector exist:
a) If Windows is using one single CPU core and the RTOS is running in exclusive

15.02.2021 Page 27/208

mode, values from 0x00 up to 0xFF are allowed. Note: automatic configuration will
only use values between 0xE0 and 0xFF.
b) If Windows is using more than one CPU core, values have to be 0xF0 or higher.
c) If the RTOS is running in shared mode and Windows is using only one single CPU
core, values have to be 0xE0 or higher.

3.4.4 RTOS config file

3.4.4.1 Windows controlled PCI devices not using interrupts

Sometimes a conflicting Windows device is known to never really generate interrupts.
In such cases it is possible that other devices which are controlled by the RTOS are allowed to use the
same interrupt line as the Windows device would use ï normally it is not allowed that the same
interrupt line is used by both, Windows and the RTOS (see section 3.2).

If the RTOS is started by the Windows Uploader it will first check for interrupt conflicts. If such conflicts
are detected an error message will be shown and the RTOS will not be started.
The error message identifies the conflicting devices.

Example:
Interrupt conflict between a PRO/100 card that shall be controlled by the RTOS and a USB host
controller that shall be controlled by Windows. The following error message will be displayed.
ERROR: Device Configuration - conflicting devices for interrupt (16)

 - Intel(R) 6300ESB USB universal host controller - 25A9

 (PCI \ VEN_8086&DEV_25A9&SUBSYS_25A18086&REV_02\ 3&267A616A&0&E8)

 - RTOS PRO/100 compatible PCI card

 (P CI \ VEN_8086&DEV_1229&SUBSYS_000C8086&REV_08\ 4&3ABFD0AC&0&00F0)

The USB host controller is identified by the following device string:
PCI \ VEN_8086&DEV_25A9&SUBSYS_25A18086&REV_02\ 3&267A616A&0&E8

In case you know that this USB host controller will never generate interrupts you may insert the
following configuration setting into the RTOS configuration file:
[WindowsDevices]

"MaxInterruptShareDeviceIndex"=dword:01

"InterruptShareDevice0"="PCI \ VEN_8086&DEV_25A9&SUBSYS_25A18086&REV_02\ 3&267A616A&0&E8"

The value of InterruptShareDevice0 must be identical to the device name shown in the Uploader error
message. Wildcards ó*ô for multiple and ó!ô for a single character are supported.

15.02.2021 Page 28/208

3.5 Driver Signing

Digital signatures are used to prevent viruses from installing or manipulating drivers by ensuring their
integrity. To be able to install a driver without a signing warning or error the signatures must be
correct.
Since Windows Vista it is possible for a software publisher to sign a driver using a KernelMode
CodeSigning certificate, which can be bought from a Certificate Authority (CA).

3.5.1 Driver Package Signing

A RtosPnp driver package typically contains:
- RtosPnp.sys Driver
- RtosPnpInstaller.dll Class(Co)Installer
- WdfCoInstaller01009.dll Driver Framework
- MyDriver.inf Inf-File
- MyDriver.cat Catalog file

RtosPnp.sys, RtosPnpInstaller and WdfCoInstaller01009.dll are signed to prevent code manipulation.
MyDriver.inf is not signed - its integrity is ensured by the catalog file.

The catalog file contains the filename and hash information about all other files which are part of the
driver package. To protect against any changes the file is signed.

After modifying an Inf-File it is required to rebuild and sign the catalog file.
The catalog filename is defined by the Inf-File entry ñCatalogFileò.

Prerequisites:

- Windows Driver Kit fro the code signing tools
- A ñKernel Mode Code Signingò certificate issued for example from DigiCert,

GlobalSign, Thawte, VeriSign or any other authority listet in Microsoft ñCross-
Certificates for Kernel Mode Code Signingò

- A Microsoft Cross-Certificate corresponding to the ñKernel Mode Code
Signingò certificate.
A list can be found in the MSDN ñCross-Certificates for Kernel Mode Code
Signingò
http://msdn.microsoft.com/en-
us/library/windows/hardware/dn170454(v=vs.85).aspx

- The driver package to be signed

Signing:

1) Open a WDK Build Environment - for example Windows 7 ñx86 Free Build Environmentò.
2) Change into the directory containing all your driver package files.
3) Ensure the Inf-File contains all required modifications.

Tip: The Inf-File name and ñCatalogFileò entry should be different from their original.
4) Delete any existing catalog file in the driver package directory.
5) Creating a new catalog file by calling:

C:\MyDriverPackage>inf2cat.exe /driver:"."
/os:2000,XP_X86,XP_X64,Server2003_X86,Server2003_X64,Vista_X86,Vista_X64,Server20
08_X86,Server2008_X64,7_X86,7_X64,Server2008R2_X64 /verbose

You may add or remove supported OS as required. A list of possible options will be shown
calling: ñinf2cat.exe /?ò

http://msdn.microsoft.com/en-us/library/windows/hardware/dn170454(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/hardware/dn170454(v=vs.85).aspx

15.02.2021 Page 29/208

The created catalog file can be open by a double click. It is currently unsigned. The Security
Catalog lists all covered files.

6) Sign a catalog file by calling:

C:\MyDriverPackage>signtool.exe sign /v /ac "C:\MyCerts\MyCrossSignCert.cer" /f
"C:\MyCerts\MyCodeSignCert.pfx" /p MyCodeSignCertPassword /t
http://timestamp.verisign.com/scripts/timestamp.dll MyDriver.cat

A list of possible options will be shown calling: ñsigntool.exe /?ò

After signing the catalog file it should be shown as valid and contain a signature.

7) Verifying a catalog file for "default authenticode signing policy" by calling:

C:\MyDriverPackage>signtool.exe verify /tw /pa /v MyDriver.cat

Please remember that this has to be done separately for 32 and 64 bit driver package.

http://timestamp.verisign.com/scripts/timestamp.dll%20MyDriver.cat

15.02.2021 Page 30/208

3.5.2 Certificate Pre-Installation

To prevent the ñDo you trust this publisherò question during driver installation the certificate has to be
installed in the ñTrusted Publishers Certificate Storeò.

This is done automatically after you once select ñAlways trust software from éò.

As an alternative you can pre-install the certificate in the store and so prevent the question.

1) Install the driver on a system and select ñAlways trust software fromé.ò
2) Call ñcertmgrò from an administrator command line. The tool is part of Windows 7 or

alternatively the WDK. The certificate should be listed below ñTrusted Publishersò:

3) Export the certificate into a file:

15.02.2021 Page 31/208

This file can now be used for pre-install the certificate on any PC and prevent the dialog during driver
installation.

The pre-installation can be done by right-click the file and select ñinstallò. The correct store is
important:

Alternatively the certmgr.exe tool can be used to automatically install the certificate:
C:\MyCerts>certmgr.exe -add MyPublisherCert.cer -s -r localMachine trustedpublisher

A programmatically solution is also possible. The following calls will be required:
- CertOpenStore
- CertEnumCertificatesInStore
- CertAddCertificateContextToStore
- CertFreeCertificateContext
- CertCloseStore

15.02.2021 Page 32/208

4 RTOS Operation Mode
The basic decision that has to be made is the RTOS Operation Mode that shall be used.
The following variants are available:

¶ Shared Mode operation (single core system):
Windows and the RTOS both run on one single cpu core. Windows will only get CPU time
when the RTOS becomes idle.

¶ Shared Mode operation (multi core system):
Windows utilizes all cpu cores in the system, the RTOS may run on an arbitrary cpu core.
Thus, the core where the RTOS is running will be shared by Windows and the RTOS.
Windows will only get CPU time on this core when the RTOS becomes idle.
Note: if the RTOS doesnôt become idle all Windows activities on that core will cease which will
also block all other Windows cores to operate correctly.

¶ Exclusive Mode Operation
On a system with n cpu cores Windows will use the first (n-1) cores and the RTOS will use the
last cpu core. Both operating systems run completely independent from each other.

¶ SMP Exclusive mode operation
On a system with n cpu cores Windows will use the first w cores and the RTOS will use the
remaining r cpu cores (where r > 1). The RTOS thus will use more than one core and run in
SMP mode (Symmetric Multiprocessing mode). Both operating systems run completely
independent from each other.

¶ SMP Shared mode operation
On a multi core system Windows utilizes only the first cpu core, the RTOS will use all other
cpu cores in SMP mode. Thus, the first core will be shared by Windows and the RTOS.
Windows will only get CPU time when the RTOS becomes idle on this core.

The operation mode can be determined as follows.

a) The number of cpu cores used by Windows is determined by the Windows boot configuration.

Windows Vista / 7 / 8 / 10
The boot configuration has to be edited using ñBCDEditò from the command line.
- Open a command line (cmd) with administrator rights (right click, start as administrator)
- enter ñbcdedit /set numproc nò to configure Windows to use ónô processor(s).
The setting can be removed with ñbcdedit /deletevalue numprocò

To be able to start RTOS on an exclusive core on Windows Vista or newer the Uploader
automatically sets the following entry: ñbcdedit /set firstmegabytepolicy useallò
This will not be removed when the product gets uninstalled.
The entry can be removed manually by calling ñbcdedit /deletevalue firstmegabytepolicyò

b) The cpu cores that shall be used by the RTOS are determined by the configuration parameter
ProcessorMask in section [Rtos]. Bit 0 represents the first cpu core, bit 1 the second etc..
Examples:
ProcessorMask = 1: RTOS will run on core 0 (first core)
ProcessorMask = 2: RTOS will run on core 1 (second core)
ProcessorMask = 3: RTOS will run on core 0 and 1 (first two cores)
ProcessorMask = C: RTOS will run on core 2 and 3

15.02.2021 Page 33/208

4.1 Shared Mode operation (single core)

Windows and the RTOS both run on one single cpu core. Windows will only get CPU time when the
RTOS becomes idle.

Windows
RTOS

Tasks

RTOS

ISR

¢¡

£

Realtime IRQ

Windows RTOSPriority of Execution

IR
Q

Configuration
Boot configuration: no adjustment is necessary
ProcessorMask: 1

15.02.2021 Page 34/208

4.2 Shared Mode operation (multi core)

Windows utilizes all cpu cores in the system, the RTOS may run on an arbitrary cpu core. Thus, the
core where the RTOS is running will be shared by Windows and the RTOS. Windows will only get
CPU time on this core when the RTOS becomes idle.
Note: if the RTOS doesnôt become idle all Windows activities on that core will cease which will also
block all other Windows cores to operate correctly.

P
rio

rity
 o

f E
x
e

c
u

tio
n

Core 1:

RTOS +

Windows

Core 2 (or 3,4,..):

Windows

RTOS

Tasks

RTOS

ISRs

R
e
a
lt
im

e
 I
R

Q

2 1

Windows

IR
Q

£

R
e
a
lt
im

e
 I
R

Q

Windows

IR
Q

Configuration example 1 (RTOS running on first core, see picture)
Windows uses all cpu cores, the RTOS uses the first cpu core.
Boot configuration: no adjustment is necessary
ProcessorMask: 1

Configuration example 2 (RTOS running on second core)
Windows uses all cpu cores, the RTOS uses the second cpu core.
Boot configuration: no adjustment is necessary
ProcessorMask: 2

15.02.2021 Page 35/208

4.3 Exclusive Mode operation

On a system with n cpu cores Windows will use the first (n-1) cores and the RTOS will use the last cpu
core. Both operating systems run completely independent from each other.

Core 1:

Windows
Core 2:

VxWorks

RTOS

Tasks

RTOS

ISRs

¢¡

Realtim
e IRQ

Windows

Processes

Windows

ISRs,

DPCs

¢¡

W
indows IRQ

Configuration example 1 (dual core system, see picture)
Windows uses the first cpu core, the RTOS uses the second cpu core.
Boot configuration: set NUMPROC to 1
ProcessorMask: 2

Configuration example 2 (quad core system)
Windows uses the first 3 cpu cores, the RTOS uses the fourth cpu core.
Boot configuration: set NUMPROC to 3
ProcessorMask: 8

15.02.2021 Page 36/208

4.4 SMP Exclusive Mode operation

On a system with n cpu cores Windows will use the first w cores and the RTOS will use the remaining
r cpu cores (where r > 1). The RTOS thus will use more than one core and run in SMP mode
(Symmetric Multiprocessing mode). Both operating systems run completely independent from each
other.

Cores 1 + 2: Windows in SMP Mode

Windows

Processes

Windows

ISRs,

DPCs

¢¡

W
indow

s
IR

Q

Cores 3 + 4: RTOS in SMP Mode

RTOS

Tasks

RTOS

ISRs

¢¡

R
ealtim

e

IR
Q

Windows

Processes

Windows

ISRs,

DPCs

¢¡

W
indow

s

IR
Q

RTOS

Tasks

RTOS

ISRs

¢¡

R
ealtim

e

IR
Q

Configuration example 1 (quad core system, see picture)
Windows uses the first 2 cpu cores, the RTOS uses the last 2 cpu cores.
Boot configuration: set NUMPROC to 2
ProcessorMask: C

Configuration example 2 (octal core system)
Windows uses the first 4 cpu cores, the RTOS uses the last 4 cpu cores.
Boot configuration: set NUMPROC to 4
ProcessorMask: F0

15.02.2021 Page 37/208

4.5 SMP Shared Mode operation

On a multi core system Windows utilizes only the first cpu core, the RTOS will use all other cpu cores
in SMP mode. Thus, the first core will be shared by Windows and the RTOS. Windows will only get
CPU time when the RTOS becomes idle on this core.

P
rio

rity
 o

f E
x
e

c
u

tio
n

Core 1:

RTOS +

Windows

Core 2 (or 3,4,..):

RTOS

RTOS

Tasks

RTOS

ISRs

1

R
e
a
lt
im

e
 I
R

Q
2

RTOS

Tasks

RTOS

ISRs

R
e
a
lt
im

e
 I
R

Q

2 1

Windows

IR
Q

£

R
e
a
lt
im

e
 I
R

Q

Configuration example 1 (dual core system, see picture)
Windows uses the first cpu core, the RTOS uses all cpu cores.
Boot configuration: set NUMPROC to 1
ProcessorMask: 3

Configuration example 2 (quad core system)
Windows uses the first cpu core, the RTOS uses all 4 cpu cores.
Boot configuration: set NUMPROC to 1
ProcessorMask: F

15.02.2021 Page 38/208

5 RTOS VM configuration files (*.config files)
Configuration of the RTOS Virtual Machine is controlled using ASCII type config files.
Additional RTOS specific settings will also be stored in these files.

A config file has to start with the following header / signature:
RtosConfig

Another config file can be included (nested includes are possible) using:
#include ñAnotherConfigFile.config ò

A comment can be made for a whole line or at the end of a line
; This is a comment example

#include ñAnotherConfigFile.configò ; This is another comment example

A config file should end with a new line to prevent compatibility problems with some versions.

This manual only covers generic settings valid for all RTOSWin solutions.
The configuration file is divided into the following main sections:

¶ [Upload] = Upload settings

¶ [Vmf] = Virtual Machine Framework settings

¶ [Windows] = Windows configuration settings

¶ [Rtos] = RTOS 1 configuration settings for OsId 0
[Rtos1] = RTOS 2 configuration settings for OsId 1
[Rtos2] = RTOS 3 configuration settings for OsId 2
é
When document refers to [Rtos] this is also applicable for [Rtos1], [Rtos2], é .

5.1 Processor configuration (RTOS)

Please see chapter ñ4 RTOS Operation Modeò for additional details.

Section [Rtos]

Entry Name Type Description

ProcessorMask Dword

Each bit represents a CPU to be used by a RTOS.
0x1 means 1st CPU,
0x2 means 2nd CPU,
0x5 means 1st and 3rd CPU

Limitations:
- Different Rtos canôt share CPU(s).
- An OS using multiple CPUs canôt share CPU(s) with
another OS also using multiple CPUs.

15.02.2021 Page 39/208

5.2 Interrupt Processor Vector Ranges

At the default configuration the RTOS interrupt processor vector range is always above the Windows
interrupt processor vector range ï for compatibility even on exclusive core configuration.

Example 1 (QuadCore):
Windows Boot configuration: set NUMPROC to 1
Rtos Config file: [Rtos] ñProcessorMaskò=dword:0F
Ą Windows vector range: 0x20-0xDF
Ą RTOS vector range: 0xE0-0xFF

Example 2 (QuadCore):
Windows Boot configuration: set NUMPROC to 2
Rtos Config file: [Rtos] ñProcessorMaskò=dword:0C
Ą Windows vector range: 0x20-0xEF
Ą RTOS vector range: 0xE0-0xFF

At example 2 Windows uses the first two cores and RTOS the other two cores.
Because the vector ranges overlap it must be ensured that the RTOS can handle incoming broadcast
interrupts. This feature (Multi-SMP with Windows 7) is supported since version 5.0.00.31.

When Windows uses only one processor which is not shared with RTOS it might be possible to
allow RTOS to use all available vectors from lowest 0x20 to highest 0xFF.
This can be done at the [Rtos] section in the config file. Because of compatibility with old versions this
is not the default configuration.

Example 3 (QuadCore + processor vector settings):
Windows Boot configuration: set NUMPROC to 1
Rtos Config file: [Rtos] ñProcessorMaskò=dword:0E
Ą Windows vector range: 0x20-0xEF
Ą RTOS vector range: 0x20-0xDF

Section [Rtos]

Entry Name Type Description

ProcessorVectorLowest Dword

Optional; Set lowest vector allowed for range
determination
Warning: Do not change this value without request. An
invalid value causes system instability.

ProcessorVectorHighest Dword

Optional; Set highest vector allowed for range
determination
Warning: Do not change this value without request. An
invalid value causes system instability.

15.02.2021 Page 40/208

5.3 Memory configuration

Each RTOS has to be configured to use an individual, specific physical memory range.

The individual memory range of each RTOS must be defined in the RTOS specific section.
Section [Rtos] for first, section [Rtos1] for second RTOS and so on.

Entry Name Type Description

MemoryStartAddress Dword
RTOS memory physical base address (in bytes).
omitted = use allocated memory
x = use this base address

MemorySize Dword RTOS memory size

MemorySizeMin Dword
Optional value usefull with MemoryType 4. Will return
error 0x00153B6D if allocated size is below.

Alignment Dword

Physical memory adress alignment (in bytes).
Only relevant when ñMemoryStartAddressò = 0.
0 = no alignment used

Omitted equals 0

AddressMax Dword

Highest physical address usable (in bytes).
Only relevant when ñMemoryStartAddressò = 0.

Omitted equals 0xFFFFFFFF

MemoryType Dword

0 = Autodetermination
1 = (reserved)
2 = RA; not usable on EFI systems
3 = BCD; Maximum for x86=~512MB and x64=~3MB
4 = MEM; Allocated memory (contiguous)

Omitted equals 0

How MemoryType autodetermination selects a type:

If ĂMemoryStartAddressñ is omitted : MEM (4)

Else if BCD is available and (MemorySize < maximum reservable) and (MemorySize <
128MB) : BCD (3)

Else if Legacy- and not UEFI- firmware : RA (2)

Else if BCD is available : BCD

Else : Error

* BCD is available starting with Windows 7 ï except on W10-2004.

** If MemorySize is above BCD limit an additional SharedMemory named ñOsXHeapò, where X is OS-
ID, will be allocated:
If MemorySize is <=16MB the SharedMemory will be of the same size ï if not its size will be
(MemorySize ï BCD limit). The MemorySize will be set to the BCD limit.

15.02.2021 Page 41/208

The global physical memory range, defined in the [Upload] section, has been superseded by
redesigned memory management and may only be useful to override automatic determination.

Entry Name Type Description

RteMemoryStartAddress Dword Physical base address where the first RTOS is located

RteMemorySize Dword Memory size to be reserved for all RTOS

The following RTOS specific settings are deprecated and have been superseded by
VMF_OSIMAGE_INFO
(Exception: RTOS-32 still requires them for the debugger)

Entry Name Type Description

ImageOffset Dword
Offset where the RTOS image has to be copied by the
uploader

EntryPointOffset Dword Boot entrypoint offset of the RTOS

VmfAnchorOffset Dword
VMF management anchor offset. After loading the RTOS
image the uploader will copy the VMF management
information data at this location.

VmfVersionOffset Dword
VMF version offset. After loading the RTOS image the
uploader will check the VMF version used by the RTOS.

5.3.1 Advantages and disadvantages of different OS memory reservation methods

This is an overall table. Specific OS may have additional limits like maximum usable memory or
maximum usable address.

Memory Type MEM BCD RA

Use Virtualization Technology (VT) No Yes No Yes No Yes

Available on UEFI systems Yes Yes Yes Yes No No

Size limit on 64bit host >W10-2004 <4GB <4GB <512MB <512MB <4GB <4GB

Size limit on 64bit host =W10-2004 <4GB <4GB 0MB 0MB <4GB <4GB

Size limit on 64bit host <W10-2004 <4GB <4GB <3MB <3MB <4GB <4GB

Size limit on 32bit host != W10-2004 <4GB <4GB <512MB <512MB <4GB <4GB

Size limit on 32bit host = W10-2004 <4GB <4GB 0MB 0MB <4GB <4GB

Size limited to physical contiguous
memory being available

Yes Yes (1) Yes Yes Yes Yes

Address limited to 32bit Yes No Yes Yes Yes Yes

Allocation size guaranteed No No Yes Yes Yes Yes

RTOS must be relocatable (2) Yes No No No No No

Influence by Windows Update:

Driver memory allocations Yes Yes No No No No

BCD-store ñbad memoryò settings No No Yes Yes No No

Boot loader replacement No No No No Yes Yes

Registry ñHiberbootEnabledò setting No No No No Yes Yes

(1) óNoô for a further version supporting non-contiguous memory.
(2) Currently RTOS-32 and VxWorks are neither relocatable nor planed to become.

15.02.2021 Page 42/208

5.4 Time/Date and Timezone synchronization

The RTOSWin solution supports time/date and timezone synchronization to assure that all
partizipating operating systems show the same date and time. Each operating system may decide to
either use its own date, time and timezone or shall be synchronized by another OS.

The config file settings regarding the time/date and timezone synchronization are OS specific and
have to be made in an OS section like [Windows\TimeSync] or [Rtos\TimeSync].

Entry Name Type Description

ModeGet dword

0 Auto (=RTC)
1 Time from RTC (Chipset) will be used
2 Time from Soft-RTC (OS) will be used
omitted = 0 = Default = RTC
This setting is currently evaluated by Windows only.

ModeSet dword

0 Auto (=UTC when available else Local)
1 UTC time will be set
2 Local time will be set
omitted = 0 = Default = UTC

TaskEnabled dword

0 Task will not be started
1 Task will be started
2 Task will be started, init time and timezone once and
then finish.
omitted = 1 = Task will be started

TaskPriority dword

This defines the task priority for the time/date and
timezone synchronization thread. The values are OS
specific. The delivered config file contains OS specific
information about lowest and highest possible priority.

If the entry does not exist then the OS uses an OS
specific priority compatible to older versions.

TimeSyncMaster string

Identification string of the OS which is the source of the
time and date.

Possible values are ñWindowsò and ñRtosò.

If the entry does not exist then the OS will act as master
and use its own time/date.

TimezoneSyncMaster string

Identification string of the OS which is the source of the
timezone.

Possible values are ñWindowsò and ñRtosò.

If the entry does not exist then the OS will act as master
and use its own timezone.

Shortly said every OS has to know where to take its info from ï from itself (Ą master) or another OS
(Ą slave). When no configuration is found an OS takes its infos from itself.

15.02.2021 Page 43/208

5.4.1 Windows

By default Windows uses its own clock and is not being synchronized with another clock.
If the (first) RTOS shall be used as time and timezone master the following entries have to be
activated:
[Windows \ TimeSync]

"TimeSyncMaster"="Rtos"

"TimezoneSyncMaster"="Rtos"

[Rtos \ TimeSync]

"TimeSyncMaster"="Rtos"

"Tim ezoneSyncMaster"="Rtos"

5.4.2 RTOS

By default the RTOS is being synchronized with the Windows clock.
The following entries have to be activated:
[Windows \ TimeSync]

"TimeSyncMaster"="Windows"

"TimezoneSyncMaster"="Windows"

[Rtos \ TimeSync]

"TimeSyncMaster"=" Windows"

"TimezoneSyncMaster"=" Windows "

5.4.3 Windows / RTOS

Both OS are running separately without time/date and timezone synchronization. This is the default if
no configuration entries are found. Alternatively the following entries can be activated:
[Windows \ Ti meSync]

"TimeSyncMaster"="Windows"

"TimezoneSyncMaster"="Windows"

[Rtos \ TimeSync]

"TimeSyncMaster"="Rtos"

"TimezoneSyncMaster"="Rtos"

15.02.2021 Page 44/208

5.5 Section [Vmf]

This chapter describes all settings in the [Vmf] section of the config file. It contains VMF settings valid
for the whole RTOSWin system.

[Vmf]

Entry Name Type Description

AddressMax hex

This parameter defines the maximum physical address
allowed for VMF memory.
When omitted ñFF,FF,FF,1F,00,00,00,00ò (=
0x000000001FFFFFFF = below 512MB) will be used.
The default value is ñFF,FF,FF,FF,00,00,00,00ò (=
0x00000000FFFFFFFF = below 4GB).
Sometimes using SharedCore requires a value of
ñFF,FF,FF,8F,00,00,00,00ò (= 0x000000008FFFFFFF =
below 2GB). Uploader will inform about this requirement.
Before changing the value please affirm this will be
supported by RTOS.

EventCount dword

Maximum number of events supported.
100 (fixed) for versions < 6.1.00.06
500 (default) for versions >= 6.1.00.06
Starting with 6.1.00.06 the number can be modified using
config entry ñEventCountò.

TimerHwInputFreq dword
This parameter can be used to override the determined
VMF hardware timer input frequency with a specific value
(unit Herz).

TimerMeasureDelayLimit dword

This parameter specifies the maximum delay in TSC ticks
for reading all required timer and counter values for a
single point in time during timer and TSC frequency
determination.
Exceeding the default limit may indicate inaccuracy in the
determined frequencies.
=0 Use best value ï recommended for running VmWare
>0 Limit in TSC ticks
If omitted ñ0x1388ò (5000) is the default.

VerbosityLevel dword

This parameter specifies the message level to be
displayed by a message box:
0 ï only fatal errors
1 ï also other errors
2 ï also warnings
If omitted ñ0ò is the default.

VtAllowed dword

This parameter contains flags for Hardware Virtualization
support:
Bit 0: Allow VT support for VT-x and VT-d.
Bit 1: Do not move host into a guest (Debug Flag)
Bit 2: Do not use VT-d (Debug Flag)

CAUTION: VT mode must be licensed
separately!

15.02.2021 Page 45/208

[Vmf\Interrupts]

Entry Name Type Description

IdRenumber dword

This parameter specifies if VMF should renumber interrupt
IDs. On default the IDs are given by Uploader. This
numeration is not contiguous and might become values
above 100. Some OS may not be compatible with such
high interrupt numbers so VMF can renumber the IDs
(contiguous, starting with given value).
0 ï do not renumber IDs
>0 ï renumber IDs equal or above given value
If omitted ñ0ò is the default.
For example 0x30 (48) would mean that all IDs equal or
above 48 will be renumberd to contiguous IDôs starting
with 48.

[Vmf\MessageBox]

Entry Name Type Description

TextBufferLength dword

This parameter specifies the buffer size to be used for
vmfMessageBox API.
The minimum value is 522 = (
VMF_MESSAGEBOX_MAX_TEXT_SIZE +
VMF_MESSAGEBOX_MAX_TITLE_SIZE + 2).
When omitted the minimum will be used as default.

15.02.2021 Page 46/208

5.6 Section [Upload]

This chapter describes all settings in the [Upload] section of the config file. It contains generic settings
valid for the whole RTOSWin system.

Entry Name Type Description

Trace dword
Enable or Disable the Uploader tracing facility.
Disable tracing = 0 (default). Enable tracing = 1

TraceFile string
If tracing is enabled, all trace data will be stored in this
named file. Default = "trace.txt".

WaitForRtosCommSubsystems dword

Disabled = 0. Enabled = 1(default). If enabled: upon
starting the RTOS, the Uploader will wait for
communication subsystems to be initialized before
finishing. Enabling this parameter can increase the start
time. Disabling it could cause synchronization problems.

LaunchRtosControl dword

This parameter causes the RtosControl system tray
application to be launched.
0 = do not launch
1 = (default) launch RtosControl tray application
2 = Donôt start RtosControl, but let RtosService do
message box handling. If ñMessageBoxShowò value is not
configured it will be set to 0.

RtosControlPath string
This parameter is optional and can contain a relative or
absolute path with or without the executable name to
RtosControl.

MessageBoxShow dword

This parameter causes message box to be auto-answered
without showing a dialog to ask for user input:
VMF_MESSAGEBOX_ABORTRETRYIGNORE will return
ñAbortò
VMF_MESSAGEBOX_YESNOCANCELand
VMF_MESSAGEBOX_YESNO will return ñYesò
VMF_MESSAGEBOX_RETRYCANCEL will return
ñCancelò
all other will return ñOKò

0 = auto-answer.
1 = show message box (default).

MessageBoxLog dword

This parameter causes message box messages to be also
written into application system log.
This feature is independent from Microsoft Build-In feature
of logging message boxes to system log.

0 = do not write log entry.
1 = write log entry.
Default depends on ñMessageBoxShowò setting. If a
message will be shown logging is disabled ï else enabled.

BootCodeReservationForce dword

0 = (default) reservation is not forced.
1 = forces Uploader to statically reserve processor boot
code memory.
On default the static reservation is not forced and will be
done only in case the RtosDrv could not dynamically
reserve the memory. Activating static boot code
reservation requires a reboot. Reservation will be
removed with ñ-memcfg -u" (or ñ-urò) option only.

BootCodeBaseFallback dword
Fallback base address to be used for processor boot code
memory reservation. Default value is 0x40000.

15.02.2021 Page 47/208

Entry Name Type Description

SetFirstMegabytePolicy dword

0 = force FirstMegabytePolicy not to be set.
1 = (default) set policy when required.
Policy will also not be set if BootCodeReservationForce is
active.

AllowMultiSmp dword

Deprecated ï this setting has been superseded by
VMF_OSIMAGE_INFO flag
VMF_OSIMAGE_INFO_FLAG_1_MULTISMP.

This parameter enables the option to run Windows 7 SMP
with RTOS SMP (Multi-SMP).

0 = (default) Multi-SMP not allowed for Windows 7. 1 =
Allowed.

Attention:
RTOS must explicit support Windows 7 Multi-SMP or the
system might crash! Please check release notes if Multi-
SMP is supported.

Flags dword

Bit 0:
When clear (default) RtosStart will not unload VMF or OS
after an error.
When set RtosStart will unload VMF and/or OS after an
error. But OS start failure will not unload VMF when it was
previously loaded by a separate call.

15.02.2021 Page 48/208

5.7 Multi Purpose Shared Memory

This chapter describes all settings of the config file regarding multi purpose shared memories in the
sections [SharedMemory\UserDefinedShmName] respectively
[SharedMemory\UserDefinedShmName\AccessModes].
(ñUserDefinedShmNameò can be a user defined name)

Attention:
When multiple large shared memories are configured it is possible the system has not enough
memory remaining to boot. Such a situation can be solved this way:

- Start the system in Safe Mode
- Change the SharedMemory configuration
- Start the RTOS to update with the new configuration
- Reboot the system

[SharedMemory\UserDefinedShmName]

Entry Name Type Description

Name string

This parameter specifies the name of the shared memory.
This name can be used to query the ID using
vmfIdGetByName() respectively RtosGetIdByName()
function.

Description string A string describing the shared memory.

Base dword

Base address of shared memory.
0 = automatic allocation (recommended)
x = use this static address as base
omitted = equals 0
Limitations for static addresses:
- The address must be within the range of
ñRteMemoryStartAddressò and ñRteMemoryStartAddressò
+ ñRteMemorySizeò
- The memory can not be accessed directly from
Windows.

Alignment dword
Physical memory adress alignment (in bytes).
Only relevant when ñBaseò = 0.
0 = default = no alignment used

AddressMax dword
Highest physical address usable (in bytes).
Only relevant when ñBaseò = 0.
0xFFFFFFFF = default

Size dword Size of shared memory (in bytes)

File string
Path and Filename to load the shared memory content
from a file or save it to.

Initialize dword

0 = donôt initialize memory. The memory will nevertheless
be zeroed once after allocation, but not each time VMF
gets loaded.

1 = zero memory

2 = initialize memory with file

3 = as (2) but initialize with '0' if file not found instead of
error

7 = as (3) but on load renames "File" to "File.loaded".
Existing file will be replaced. In combination with "Save"
this prevents re-use of old data e.g. after power-failure.

F = as (7) but rename also read only files

