

acontis technologies GmbH

SOFTWARE

VxWin
VxWorks & MS Windows

Product Manual
Edition: 2020-07-08

acontis technologies GmbH

2 of 50

© Copyright acontis technologies GmbH

Neither this document nor excerpts therefrom may be reproduced, transmitted, or conveyed to third parties by any means
whatever without the express permission of the publisher. At the time of publication, the functions described in this document
and those implemented in the corresponding hardware and/or software were carefully verified; nonetheless, for technical
reasons, it cannot be guaranteed that no discrepancies exist. This document will be regularly examined so that corrections can
be made in subsequent editions. Note: Although a product may include undocumented features, such features are not
considered to be part of the product, and their functionality is therefore not subject to any form of support or guarantee.

 VxWin

3 of 50

Compact Table of Contents

1 Introduction ... 7

2 VxWin configuration settings .. 12

3 Tutorials ... 16

4 Example Applications... 24

5 Userôs Guide .. 26

6 Built-in tools and utilities ... 49

7 Version History ... 50

acontis technologies GmbH

4 of 50

Table of Contents

1 Introduction ... 7

1.1 The ACONTIS RTOSWin Product Family .. 7

1.2 The ACONTIS RTOS Virtual Machine .. 8

1.2.1 Shared Mode Operation ... 8

1.2.2 Exclusive Mode Operation.. 9

1.3 VxWin Architecture Overview .. 10

1.4 Components .. 11

1.4.1 Development components .. 11

1.4.2 Runtime components .. 11

2 VxWin configuration settings .. 12

2.1 VxWin.config ï the VxWin configuration file ... 12

2.1.1 Syntax ... 12

2.1.1.1 General rules ... 12

2.1.1.2 Keys, Entries, and Values ... 12

2.1.1.3 Include statements .. 13

2.2 VxWin specific parameters .. 14

2.2.1 Bootline ... 14

2.2.2 Console... 14

2.2.3 VnetMACAddress ... 14

2.2.4 VnetPollPeriod .. 14

2.2.5 VnetNumCluster ... 15

2.2.6 AddNetworkX .. 15

2.2.7 LogNetworkXxx .. 15

3 Tutorials ... 16

3.1 Running a shipped VxWorks image and start the RealtimeDemo application................. 16

3.2 How to build the VxWorks example applications .. 18

3.3 How to make your own VxWin Image (BSP) .. 19

3.4 How to debug an Application .. 23

3.5 How to debug the BSP ... 23

4 Example Applications ... 24

4.1 General ... 24

4.2 Building a Windows application .. 24

4.3 Building a RTOS (VxWorks) application ... 24

 VxWin

5 of 50

4.4 List of examples .. 25

5 Userôs Guide .. 26

5.1 Debugging - Using Tornado/Workbench with VxWin ... 26

5.1.1 Two development arrangements .. 26

5.1.2 The one-system method ... 27

5.1.3 The two-system method ... 27

5.2 Accessing PCI cards .. 30

5.3 RTOS Library ... 30

5.4 Virtual Network .. 31

5.4.1 Windows 7 / 8 / 10 configuration .. 31

5.4.2 VxWorks configuration.. 31

5.4.2.1 Bootline ... 31

5.4.2.2 Virtual Network adapter address ... 32

5.4.2.3 Virtual Network adapter polling or interrupt mode ... 32

5.5 Interrupts and Exceptions ... 33

5.5.1 Exception-Handling (shared mode) .. 34

5.5.2 usrRoot Task Exceptions (shared mode) ... 34

5.5.3 Connecting an ISR to an interrupt .. 35

5.5.4 Additional interrupt functions ï VxWorks.. 35

5.6 VxWorks System overload ... 36

5.7 VxWin ï Board Support Package .. 37

5.7.1 Introduction ... 37

5.7.2 Important files in the VxWin BSP ... 38

5.8 VxWin ï Board Support Package for VxWorks 7 ... 40

5.8.1 Development Host: Copy VxWin platform and BSP ... 40

5.8.2 Target System Configuration .. 40

5.8.3 Shipped Binary image .. 40

5.8.4 VxWorks Source Build VSB ... 41

5.8.5 VxWorks Kernel Image Project VIP .. 42

5.8.6 Target connection to debug a DKM .. 44

5.8.7 Debugging a DKM .. 44

5.9 VxWorks 7 Kernel Image with 512 Mb memory ... 45

5.10 Multiple Instances ... 46

5.10.1 Individual Image Creation ... 47

5.10.2 Further Config File Dependencies .. 48

6 Built-in tools and utilities ... 49

6.1 RtosService ... 49

6.2 Boot Line for VxWorks ... 49

acontis technologies GmbH

6 of 50

7 Version History ... 50

 VxWin

7 of 50

1 Introduction

1.1 The ACONTIS RTOSWin Product Family
The ACONTIS RTOSWin family is a family of Windows virtualization solutions for multiple real-time
operating systems and Microsoft Windows.

The key component of all these solutions is the RTOS Virtual Machine. The real-time operating
systems are executed on top of the RTOS VM.

acontis technologies GmbH is providing a special VxWorks BSP. Using this BSP together with the
RTOS VM runtime VxWorks can be executed together with Windows.

More details about the virtual machine can be found in the RTOS VM User Manual.

¶ Operating Modes

¶ Realtime Device Management (how to control hardware)

¶ RTOS VM configuration

¶ Booting the RTOS

¶ Communication Services: The RTOS Library

acontis technologies GmbH

8 of 50

1.2 The ACONTIS RTOS Virtual Machine
The ACONTIS RTOS-VM provides a lightweight real-time virtualization platform for Windows.

On top of this platform either real-time firmware, custom or off-the-shelf real-time operating systems
can be executed.

When using multicore CPUs one can choose between two general operation modes. A more detailed
description about possible operation modes can also be found in the RTOS VM User Manual.

1.2.1 Shared Mode Operation

Windows shall run on all CPU cores and only one CPU core shall additionally run the real-time
software. If the Windows application needs a lot of CPU power (e.g. for image processing) this will be
the appropriate operation mode even on multi-core CPUs. In shared mode operation, Windows (on
this core) will usually only get CPU time when the real-time software is idle.

The following diagram illustrates the flow of control:

Windows
Real-time

Tasks

Real-time

ISR

¢¡

£

Realtime IRQ

Windows Real-time SoftwarePriority of Execution

IR
Q

Operating states of the RTOS-VM in shared mode

¡ Exception-handling or a higher priority interrupt becomes outstanding.

¢ Interrupt Service Routine optionally starts a new task and then finishes.

£ From the idle-state, VxWorks transfers control to Windows operating system.

Note: When running the RTOS-VM in shared mode on multiprocessor/multicore systems this state
diagram is only applicable for one CPU core in the system (by default on the first core). All other CPU
cores will run Windows only.

 VxWin

9 of 50

1.2.2 Exclusive Mode Operation

Windows and the real-time software shall run fully independently on different CPU cores. Using this
mode will lead to much shorter interrupt and task latencies, as there is no need to switch from
Windows to the real-time software.

The following diagram, illustrates the flow of control on a dual core system:

Core 1:

Windows

Core 2:

Real-time

Software

Real-time

Tasks

Real-time

ISRs

¢¡

Realtim
e IRQ

Windows

Processes

Windows

ISRs,

DPCs

¢¡

W
indows IRQ

Operating states of the RTOS-VM in exclusive mode

¡ Exception-handling or a higher priority interrupt becomes outstanding.

¢ Interrupt Service Routine optionally starts a new task and then finishes.

Note: When running the RTOS-VM in exclusive mode Windows will never be interrupted. Application
and interrupt processing run concurrently and independently on both CPU cores. There is no need in
the real-time software to enter the idle state.

acontis technologies GmbH

10 of 50

1.3 VxWin Architecture Overview
VxWin is split into two main components:

a) The ACONTIS RTOS Virtual Machine runtime (VMF runtime)
b) The VxWorks BSP. This component is provided by acontis technologies.

KUKA VMF Binary Module

Windows

RTOS driver

Realtime Operating System (RTOS)

RTOS

Image

RTOS

Virtual Network driver

Board Support Package

Basic VMF API (HAL)
RTOS Processor

Dependent Part for x86

TCP/IP Stack

RTOS

Bootloader

Uploader DLL

User Application

Embedded Application

RTOS-Library-

Interface

Virtual Network Driver

Network Packet

Library

S
o

c
k

e
ts

RTOS-Library

(Communication)

BASIC VMF

(Hardware Abstraction

Layer)

O
S

 s
w

it
c

h
in

g

M
P

 t
e

c
h

n
o

lo
g

y

S
h

a
re

d
 M

e
m

o
ry

,
E

v
e

n
ts

 VxWin

11 of 50

1.4 Components

1.4.1 Development components
To develop software for VxWin the following components are provided.

a) VxWin BSP for VxWorks
Important:
The VxWin BSP is not part of the VxWin setup program. Please contact Customer Support for
the latest VxWin BSP adequate to your desired WindRiver® VxWorks version.

b) VxWin development components (SDK + Documentation)
The following files are shipped with VxWin for development support:
- VxWin User Manual
- RTOS VM User Manual (basic technology description)
- RTOS Library for Windows/RTOS communication
- SDK with Example applications

1.4.2 Runtime components
The runtime components are split into the following main parts:

a) VxWin runtime components (ACONTIS RTOS Virtual Machine)
b) Configuration files.

For more information about the Configuration files, see chapter 2.1.
c) VxWorks VxWin runtime images (this is the image built by VxWorks + VxWin BSP)

acontis technologies GmbH

12 of 50

2 VxWin configuration settings

2.1 VxWin.config ï the VxWin configuration file
All VxWin configuration settings are stored in the file VxWin.config (e.g. C:\Program
Files\acontis_technologies\VxWin\Bin\Windows\Config\). If you wish to use a different configuration
file, you may specify another filename and/or a different path by using the ïconfig option of the
Uploader command.

General configuration settings are described in the RTOS VM User manual (e.g. memory
configuration, operation mode).

2.1.1 Syntax

The configuration file is an ASCII file that can be modified with a simple editor. Its syntax is similar to
that of a Windows registry file.

2.1.1.1 General rules

¶ The first entry in a configuration file must be RtosConfig.

¶ Because comments are introduced by a semicolon (;), all characters following a semicolon
will be ignored.

¶ No single line in the configuration file may exceed 256 characters.

2.1.1.2 Keys, Entries, and Values

The configuration settings are stored using keys. Specific settings are stored in entries. Every entry
has both a name and a value. Every entry is subordinated to a specific key.

Example:

[Key]

 ñEntryName ñ=EntryValue

There are different types of values:

¶ Single hexadecimal value (dword)

 ñEntryNameò=dword:1F

¶ Strings

 ñEntryNameò=òThis is a stringò

¶ Multiple Strings

 ñEntryNameò=multi_sz:òFirst stringò,òSecond stringò,òLast stringò

¶ Multiple hexadecimal values

 ñEntryNameò=hex:XX,YY,é,ZZ

 VxWin

13 of 50

2.1.1.3 Include statements

Configuration commands and parameters can be split into multiple files. You may use an include
statement to incorporate other configuration files into VxWin.config.

Examples:

#include " myOs.config"

#include " myApp.config"

Important notes:

If no additional path information is given, included files must be located in the same directory as
VxWin.config.

Since nested includes are not supported, include statements may only be used in the main
configuration file.

Common configuration files:

Filename Meaning

VxWin.config Main configuration file ï contains includes to other
configuration file(s) and maybe some common parameters

VxWinSmp.config Configuration file used for SMP ï contains additional IPI
configuration.

General.config General configuration file ï contains information for the
Uploader Utility

acontis technologies GmbH

14 of 50

2.2 VxWin specific parameters

The user may define the following entries for VxWin under the [rtos] key:

Entry Name Type Description

Bootline String VxWorks boot line.

Console string
VxWorks device name which shall be used for the
console interface

VnetMACAddress string Virtual Network Adapter MAC address.

VnetPollPeriod dword
Virtual Network Adapter polling period in timer ticks.

0 enabled interrupt mode

VnetNumCluster dword
Number of network clusters for the Virtual Network
Adapter.

AddNetworkX string

Additional network interface where the IP stack shall
be attached to.
X==0 (AddNetwork0): first additional interface
X==1 (AddNetwork1): second additional interface

LogNetworkInterfaceX string

Network interface for which the network packet logger
shall be enabled.
X==0 (LogNetworkInterface0): first interface for
packet capturing.

LogNetworkFileX string File where the network packet log shall be stored.

LogNetworkFileMaxSizeX dword Maximum capture file size in kByte

2.2.1 Bootline

As shown in the following example, the user may override the default VxWorks

boot line by coding his/her own under the [rtos] key:
[rtos]

"Bootline" = "vnet(0,2)pc:vxWorks h=192.168.0.1 e=192.168.0.2 u=target pw=vxworks"

2.2.2 Console

By default the last serial channel is connected with the RTOS VMôs virtual I/O

channel. The VxWorks console will be redirected to the Target Console Window

through the config file entry [Rtos] "Console"="/vio/0".

Alternatively the console can be redirectet to any serial port ï for example first

port ï using ñ/tyCo/0ò.

2.2.3 VnetMACAddress

The Virtual Network adapter address [also known as the MAC (Media Control

Address) address] is generally specified in the following format:

AA-BB-CC-DD-EE-02

2.2.4 VnetPollPeriod

The Virtual Network driver by default operates in polling mode. The polling

period can be adjusted using this parameter. It is set in units of the system clock

timer. A values of 0 enables the interrupt mode.

 VxWin

15 of 50

2.2.5 VnetNumCluster

Cluster size of the Virtual Network driver. In rare cases where extensive network

traffic occurs this parameter has to be increased.

2.2.6 AddNetworkX

By default the IP stack will be attached to the virtual network. If additional

network adapters shall be under control of VxWorks these adapters can be

automatically attached to the IP stack using this parameter (the X has to be

replaced by contiguous number beginning with 0). The following example will

attach the fei0 device (first instance of the Intel PRO/100 network adapter) to the

IP stack. The IP address and subnet mask will be set accordingly.
[rtos]

"AddNetwork0"="fei0:192.168.100.1:255.255.255.0"

2.2.7 LogNetworkXxx

VxWin supports network packet logging which may help in solving network

problems. Parameter LogNetworkInterfaceX selects the network interface where

packets shall be captured. All captured packets will be stored in a file selected by

parameter LogNetworkFileX. The maximum size of the file is limited by

parameter LogNetworkFileMaxSizeX (kByte). The format of the file is

compatible with PCAP.

acontis technologies GmbH

16 of 50

3 Tutorials

3.1 Running a shipped VxWorks image and start the
RealtimeDemo application

This tutorial shows how to run a shipped VxWorks image and start the

RealtimeDemo example application.

It assumes that VxWin is installed on the PC.

¶ Start the System Manager
Ą if itôs the first launch of the System Manager opens a dialog to enter a workspace directory.

¶ Select ñMy Computerò node on the treeview and add an RTOS to the configuration.

¶ Choose one of the shipped RTOS images to be used.

 VxWin

17 of 50

¶ Select the RTOS #1 section and push the ñStart this RTOSò button.

acontis technologies GmbH

18 of 50

¶ Press ñShow Consoleò to see the Target Console Window:

Enter ñdemoStartò to start the Realtime Demo application.
The measure can be reset by entering ñdemoResetò and stopped by ñdemoStopò.

3.2 How to build the VxWorks example applications

The different examples are described in detail in chapter 4 Example Applications.

In the examples folder is additional a file HowToBuildTheExamples.txt. This file

includes a short description how to build the examples for every example

application.

 VxWin

19 of 50

3.3 How to make your own VxWin Image (BSP)

The VxWin BSP for VxWorks depends on your VxWorks version and is

delivered separately and not part of the VxWin Setup.

See chapter ñ5.7

acontis technologies GmbH

20 of 50

VxWin ï Board Support Packageò for additional information.

¶ Please copy the VxWin BSP files into your other VxWorks ñétarget\configò directory:

 VxWin

21 of 50

¶ Now Start your Workbench, right-click the ñProject Explorerò and select ñVxWorks Image
Projektò.

¶ Set the project configuration.

acontis technologies GmbH

22 of 50

¶ Optionally SMP support can be enabled.

¶ Press ñFinishò to create the project.

¶ After ñBuildò the project the file ñvxWorks.binò should be created in the ñDefaultò directory
below your project directory.

 VxWin

23 of 50

¶ This file should be copied into the VxWin installation after renaming the original file:

In this example the VxWorks 6.9 SMP file is replaced so in System Manager the RTOS
ñVxWorks 6.9 SMPò has to be selected to start the new image.

3.4 How to debug an Application
Please see chapter ñ5.1 Debugging - Using Tornado/Workbench with VxWinò for details.

3.5 How to debug the BSP
Please see chapter ñ5.1 Debugging - Using Tornado/Workbench with VxWinò for details.

acontis technologies GmbH

24 of 50

4 Example Applications

4.1 General
To make your initial experiences in working with VxWin and VxWorks go smoothly, a number of
example application programs have been provided with the product release. Some are intended as
exercises help familiarize you with various system features; others are useful tools. Much of the code
can serve as model software that can save you time in developing your own applications.

The example applications are located on the product release CD-ROM at CD:\SDK\Examples. Per
default, setup copies the sample application programs to the directory: C:\Program
Files\acontis_technologies\VxWin\SDK\Examples.

4.2 Building a Windows application
The Microsoft Windows example applications are located in ñC:\Program
Files\acontis_technologies\VxWin\SDK\Examples\Windowsò.
You can create and debug these applications with Microsoft Visual Studio 2005 or newer.
A short description how to build the examples can be found in this directory (file
HowToBuildTheExamples.txt).

4.3 Building a RTOS (VxWorks) application
The VxWorks example applications are located in ñC:\Program
Files\acontis_technologies\VxWin\SDK\Examples\VxWorksò.
A short description how to build the examples can be found in the directory of each example (file
HowToBuildTheExamples.txt).

 VxWin

25 of 50

4.4 List of examples
These examples are based on the RTOS-Library. For more information about this library, see the
RTOS VM User Manual.

Windows RTOS (VxWorks) Description

CSharpDemo - The C# demo shows you how to use RtosLib functions from a
C# application.

EventDemo EventDemo Use the Shared event demo to experiment with Shared Events
between two OS.

- FileDemo The File demo shows you how a WinCE application can
remotely access Windows file system.

InterlockDemo InterlockDemo The interlock demo shows you how to use the
InterlockedCompareExchange function to synchronize shared
memory access works between two OS.

MsgQueueDemo MsgQueueDemo Use the Message queue demo to see how a simple
communication channel can be established between two OS
using a shared memory based message queue to transfer
data.

NotificationDemo NotificationDemo The Notification demo shows you, how to receive notifications
when a blue screen error or other system events occur. The
available events depend on the OS.

PipeDemo PipeDemo Use the Pipe demo to see how a simple communication
channel can be established between two OS using a shared
memory based pipe to transfer data.

ShmDemo ShmDemo Use the Shared memory demo to see how a simple
communication channel can be established between two OS
using Shared Memory to transfer data.

SocketDemo SocketDemo Use the Socket demo to see how a simple communication
channel can be established between two OS using shared
memory based socket to transfer data.

- StdioFileDemo The File demo shows you how a WinCE application can
remotely access Windows file system using the C standard
library functions.

UploadDemo - Use the Upload demo to see how a simple application can
start and stop a RTOS.

acontis technologies GmbH

26 of 50

5 Userôs Guide

5.1 Debugging - Using Tornado/Workbench with VxWin

The following debugging methods may be used:

Task-Mode Debugging

Customarily, Tornado/Workbench is used to debug one application task at a time.

For this kind of debugging, a debugger must be initially attached to a task.

Thereafter, the user can display and modify variables, perform stepped execution,

or let the task run to a breakpoint.

In this debugging-mode, when a breakpoint is reached, only the task being tested

is stopped, the rest of the system continues to run.

For detailed discussions of how to use task-mode debugging, refer to the Tornado

User's Guide (especially Chapter 10), or the Workbench Userôs Guide (beginning

at Chapter 18).

To debug Interrupt Service Routines (ISR's) or multiple threads, however,

system-mode debugging must be used, as described in the next section.

System-Mode Debugging

System-mode debugging (external-mode debugging) is typically used to develop

Interrupt Service Routines (ISR), because IRSs run outside of any real-time task

context. It is also used whenever multiple threads are to be simultaneously

debugged.

Under system-mode debugging, whenever a breakpoint is reached, the entire

target system is stopped. For this reason, when using system-mode debugging,

the Tornado/Workbench debugger must be hosted on an external system, not on

the VxWin system.

For more detailed information about system-mode debugging, please refer to the

Tornado User's Guide or the Workbench Userôs Guide.

 ð

5.1.1 Two development arrangements

To develop software for VxWin, the user may choose either of two basic

host/target configurations:
¶ The one-system method: Develop a VxWorks application under Windows and

then run it under VxWin on the same computer...

 -or-

¶ The two-system method: Develop a VxWorks application on one computer and
run it on another computer, on which VxWin is installed. If you choose the two-
system method, you can use a single- or a double-network technique.

 VxWin

27 of 50

In the following discussion, reference is made to a "target server" and a "run-

time" or "target" agent. These debugging elements are part of

Tornado/Workbench. For details on how to configure and use them, please refer

to Wind River's Tornado User's Guide or Workbench User's Guide.

5.1.2 The one-system method

In a combined host/target system the connection between Windows and the target

is made using the VxWin Virtual Network.

In this configuration, the development software runs under Windows and the run-

time target's components run under VxWorks, which was installed on the same

PC. The development process is as follows:
¶ Step 1: Build a VxWorks image.

¶ Step 2: Using the Uploader Utility, transfer the VxWorks image into the program
memory.

¶ Step 3: Under Windows, create a target-server connection to a VxWorks target
agent.

¶ Step 4: Download the application and start debugging it.

5.1.3 The two-system method

When host and target systems are physically separated, the connection between

them can be made using either of two techniques.

Two systems ï three network adapters

Using this technique (as illustrated below), the target system has two network

adapters, one for Windows alone and one for VxWin:

acontis technologies GmbH

28 of 50

Development components are installed on the host computer ï PC1, while run-

time components are installed on the target computer ï PC2. The development

process is as follows:
ǒ Step1: Build a new VxWorks image on PC1.

 Note: As shipped, VxWorks images may not contain support for a network adapter
ǒ Step 2: To make the image on PC1 accessible from PC2, you must manually create a

network share on PC1. Then, using the Uploader Utility on PC2, load the VxWorks image.
ǒ Step 3: Create a target-server connection on PC1 to a VxWorks target agent on PC2.
ǒ Step 4: Download the application and start debugging it.

Two systems ï two network adapters

Using this technique, the target system has only one network adapter which is

used by both Windows and VxWorks. The dual use of one adapter is

accomplished by using "packet routing," described elsewhere in this manual. See

Packet routing: VxWorks Uses the Windows network adapter. Packet routing

ensures that all data packets sent to or originating from VxWorks on PC2 will be

sent through PC2's Ethernet adapter.

 VxWin

29 of 50

Here too, development components must be installed on PC1 while run-time

components must be installed on PC2.

acontis technologies GmbH

30 of 50

5.2 Accessing PCI cards
When PCI cards shall be controlled by VxWorks the PC will have to be partitioned first.
By default, all hardware belongs to Windows.
To being able to access hardware from within VxWorks, it will have to be separated from Windows.
This is described in detail in the RTOS VM User Manual.

After separation is done, the usual methods within VxWorks can be used to access PCI cards. See
the VxWorks manuals for more information.

Within the System Manager, all devices assigned to a RTOS will appear below
RTOSĄSettingsĄDevices:

5.3 RTOS Library
The RTOS library provides higher-level communication services for synchronizing Windows with
VxWorks or to exchange data between the operating systems. The RTOS library is based on VMF-
functions, which provide the basic communication functionality.
A description of the RTOS Library can be found in the document RtosVM User Manual chapter 8.1.

 VxWin

31 of 50

5.4 Virtual Network
Using a virtual network connection Windows and VxWorks can set up TCP or UDP communication
without adding additional hardware.

5.4.1 Windows 7 / 8 / 10 configuration

A detailed description how to set up the Windows side of the network can be found at the RTOS-VM
user manual.

5.4.2 VxWorks configuration

5.4.2.1 Bootline

To configure VxWorks for networking, the user should enter his own prototype boot line in the VxWin
configuration file (general.config).

When VxWin starts up, the Uploader Utility copies the prototype boot line from the configuration file
into memory at a predefined address. Then, when VxWorks boots, it reads and interprets the network
parameters in that boot line. Among the various parameters that must be specified are: network
addresses, network devices, host-computer designation, script filename, and so on.

The following describes the general VxWorks boot line syntax:

bootdev(0,procnum)hostname:filename h=# e=# b=# g=# u=userid pw=passwd

tn=targetname s=startupscript o=o ther

Parameter Description

bootdev = ñshmò for the Virtual Network, ñultraò for the SMC Elite
Ultra Ethernet adapter card, and so on. (Refer to Wind
River documentation.)

procnum = The processor number of the Virtual Network. (Must
always be 1.)

hostname = The name of the host computer from which the boot will
be performed.

filename = The filename of the VxWorks image to be executed.

e = The IP address of the Ethernet port.
This field can have an additional partial net-mask.
<inet_adrs>:<subnet_mask>

b = The IP address of the VxWorks Virtual Network
interface. This field can also have an additional partial
net-mask.

h = The host's Internet-Address.

g = The Internet address of the host system's gateway.
Note: When the host is on the same network, this field
should be left blank.

u = A valid user-name on the host.

acontis technologies GmbH

32 of 50

Parameter Description

pw = The user's password on the host system. When
specified, FTP will be used for data transfers.

tn = The name of the VxWorks target system.

s = The name of a script file containing commands in text
form to be interpreted by VxWorks Target Shell
Interpreter during startup. This script can access the
following "o" parameters.

o = ñotherò ï a character string that may be accessed either
by commands in the ïs script file or a task under
VxWorks. This string may be used, e.g., to parameterize
the boot process.

Note: Internet addresses are specified in ñdotò notation (e.g., 90.0.0.2)

Note: The order of assigned parameters is arbitrary.

Example: The following boot line could be used to configure the Virtual

Network:
vnet (0,1)pc:VxWorks h=192.168.0.1 e=192.168.0.2 u=target pw=vxworks

Note: IP addresses must, of course, match those used on the Windows side of the

Virtual Network.

5.4.2.2 Virtual Network adapter address

The network adapter address [also known as the MAC (Media Access Control)

address] is generally set in accord with the following syntax:

 AA-BB-CC-DD-EE-00

You can use a parameter in the VxWin configuration (general.config) file to

specify a network address for your Virtual Network card. Refer to

NetworkAddress in Global parameters in the VxWin configuration file. For

information on setting MAC addresses on both VxWorks and Windows, also

refer to Setting MAC Addresses for the Virtual Network Driver.

5.4.2.3 Virtual Network adapter polling or interrupt mode

The virtual network adapter can be configured either for polling or interrupt

mode (general.config).

[Rtos]

ñVnetPollPeriodò=dword:0 ; polling period in ticks (0 = interrupt mode)

 VxWin

33 of 50

5.5 Interrupts and Exceptions

Hardware devices, with the help of their associated controller/adapters, generate

interrupts to signal when they require attention from the CPU.

Upon receiving an interrupt signal, the CPU will promptly set aside its current

processing to attend instead to the needs of the interrupting device. This rapid

response assures that real-time operating systems respond to external events as

quickly as possible.

Note: While peripheral devices may share an interrupt under either of the two

operating systems, any attempt to share an interrupt between the two systems

under VxWin will result in unpredictable and certainly incorrect system

behavior.

All interrupts for VxWorks as well as those for Windows are connected to the

PCôs Interrupt Controller which, upon the occurrence of a connected event, will

interrupt the CPU.

VxWin guarantees that interrupts controlled by VxWorks always have a higher

priority than any program or any interrupt under Windows. If VxWorks is

running on the same CPU core as Windows (shared mode) then within

microseconds after an interrupt occurs, whichever Windows program or lower

priority VxWorks task was running is stopped and control is transferred to the

VxWorks Interrupt Service Routine (ISR) that the user assigned to that interrupt

during initialization.

After the ISR finishes executing, control is returned to the VxWorks kernel,

which then checks to see if any other real-time threads are ready to run. If that is

the case, the kernel will activate the now-ready-to-run task. VxWorks tasks will

continue to run until all are suspended or blocked. After which, the system will

enter the VxWorks idle loop, which in turn returns control to Windows (when

running in shared mode).

acontis technologies GmbH

34 of 50

Since Windows is re-activated only when all VxWorks tasks are idle, one could

say that Windows runs as if it were part of VxWorks idle loop (when running in

shared mode).

 State diagram of VxWin (shared mode)

5.5.1 Exception-Handling (shared mode)

The processor hardware is able to detect and respond to certain kinds of serious

errors such as faulty addressing (page/segment errors) or floating-point processor

errors (such as divide by zero). This class of hardware errors are generically

called exceptions. When an exception occurs, it triggers a high-priority interrupt.

The correct reaction to the occurrence to such an exception depends on which

operating system, Windows or VxWorks, was running at the time. To enable

them to respond, each in its own way, VxWin provides two different exception

tables (IDT), one for each system context, which it swaps at appropriate times.

Whenever a real-time interrupt activates VxWorks, VxWin replaces the

Windows exception table with one defined for VxWorks. Correspondingly,

whenever control is returned to Windows, the Windows exception table is

likewise restored.

Exception-table-swapping, is only one of the mechanisms VxWin implements to

enable the operating systems to share a single execution platform.

5.5.2 usrRoot Task Exceptions (shared mode)

If the usrRoot task (VxWorks) generates an exception, i.e., a page error, the

entire system will crash. While experience has shown that this occurs only

Windows Level

Execution

Priority

High

 Low

VxWorks
IRQ occurred

Higher priority VxWorks IRQ occurred

all threads idle

 No
thread
 active

At least one

 thread active

Idle loop

VxWorks Tasks
Level

VxWorks
 ISR Level

 VxWin

35 of 50

infrequently, when it does occur, the most common reason for it, it has been

determined, is that VxWorks had been incorrectly configured.

5.5.3 Connecting an ISR to an interrupt

After VxWorks has started, you can use the VxWorks intConnect() function to

connect an Interrupt Service Routine (ISR) to a specific interrupt level.

In the following example, the Interrupt Service Routine proc is connected to

interrupt level 7. Thereafter, interrupt level 7 in the interrupt controller is

enabled.
intLvl = 7;

intNum = INT_NU M_GET(intLvl);

intVec = INUM_TO_IVEC(intNum);

intConnect(intVec, proc, param);

sysIntEnablePIC(intLvl);

Note: intLvl is the interrupt level, intNum is the interrupt number, intVec is the

interrupt vector. The macro INT_NUM_GET supplies the required interrupt

vector from either of two arrays in accord with the interrupt controller type. One

can also use predefined macros, such as INT_NUM_COM1 or INT_VEC_COM1,

which are defined in the header file configInum.h . While proc is the C routine to

be called in response to the interrupt (the ISR), param is a parameter to be passed

to the routine each time it is called.

For more information about this topic, see Wind River's documentation, VxWorks

Programmer's Guide.

5.5.4 Additional interrupt functions ï VxWorks

When your VxWorks application must use other functions that pertain to

interrupts, you should use the standard functions as defined by Wind River for

VxWorks. Please refer first to the intLib and intArchLib libraries in the Wind

River documentation (VxWorks OS Libraries API Reference and VxWorks

Programmerôs Guide).

acontis technologies GmbH

36 of 50

5.6 VxWorks System overload

It is possible to overwhelm a real-time system with so many interrupts that it can

not dispose of the resulting workload. This causes work-queues to become full so

that they cannot accept additional entries. For most real-time applications this

would lead to an overall system malfunction.

Note: This is not a limitation of VxWin. System overload is a condition that can

arise in any real-time system.

Therefore, it is important that real-time system designers plan their systems

carefully, taking into account the worst-case demands that will be placed on it, so

that this kind of error does not occur.

When a native VxWorks detects an internal work-queue overrun, it typically re-

boots itself. After which, the BSP routine sysToMonitor is called. If we were

dealing with a VME system, for example, under these circumstances, the ROM-

monitor would be called.

But a VxWin system has no ROM-monitor. In this case, a call to sysToMonitor

causes all interrupts to be deactivated and a message box will be shown by

Windows.

 VxWin

37 of 50

5.7 VxWin ï Board Support Package

5.7.1 Introduction

The VxWin board support package (BSP) provides special adaptations for Wind

River's VxWorks to the run-time environment of VxWin.

Several files and functions are designated by Wind River Systems as platform or

run-time specific such as the sysLib.c file.

This manual describes such components and additional extensions to support the

operation of VxWorks concurrently with Windows.

Important:

The BSP is not part of the VxWin setup program. Please contact Customer

Support for the latest BSP adequate to your desired VxWorks Version.

acontis technologies GmbH

38 of 50

5.7.2 Important files in the VxWin BSP

In the following sections, some important files included in VxWin Board Support

Package have been listed along with brief explanations of their purpose.

The files are grouped primarily to reflect their general role in the system and

secondarily to reflect their file-type. Only files that were developed or modified

for VxWin are listed here.

VxWin Source Files

File Description

RtosLib.h All definitions pertinent to VxWin Interface, including
those for shared events and shared-memory API.

vxwinVioSio.c The SIO driver for the VMF VIO interface

vxwinVnetEnd.c The END driver for the VMF VNET interface

vxwinConsoleLoader.c Determine the console device using the following
entries of the VxWin config file:

[Rtos]

 "Console"="/vio/0" ; use "/tyCo/0" for first COM port.

vxwinNetworkLoader.c Attach END interface to the network stack using the
following entries of the VxWin config file:

[Rtos]

 "AddNetwork0"="fei0:192.168.100.1:255.255.255.0"

 "AddNetwork1"="gei0:192.168.200.1:255.255.255.0"

vxwinNetworkLogger.c Handle the network logging functionality using the
ñLogNetworkFilterò entries in the [Rtos] section of the
VxWin config file.

vxwinRamDiskMounter.c Automatically mount a RAM disk device to an
eventually VMF general purpose shared memory area
named ñRamDiskò. Please refer to RTOS VM User
Manual.

[SharedMemory\RamDisk]

 "Name"="RamDisk"

 "Description"="RAM disk example configuration"

 "Base"=dword:2000000

 "Alignment"=dword:0

 "Size"=dword:300000

 "File"="C:\\RamDisk.img"

 "Initialize"=dword:2

 "Save"=dword:1

 "AccessDefault"=dword:0

[SharedMemory\RamDisk\AccessModes]

 "0"=dword:1

 VxWin

39 of 50

 Additional VxWorks Test Tools

File Description

vmfInterface.h The VMF interface API header file

vxwinDemo.c

A demo-program (e.g. latency measurement)

Start the demo: function demoStart()

Stop the demo: function demoStop()

vxwinCpuMon.c

CPU Monitoring. Displays performance data for
each CPU.

Start monitoring: function vxwinCpuMonStart()

Reset monitoring: function vxwinCpuMonReset()

Stop monitoring: function vxwinCpuMonStop()

Show data: function vxwinCpuMonShow()

To get performance data on exclusive cores, enable
óIdleOsô by setting an appropriate value for
ñProcessorMaskò in the section [Idle] in the config-
file.

Additional VxWin Libraries

File Description

RtosXxYy.a VxWin kernel library for vxworks version Xx and
tool Yy (diag or gnu)

RtosXxYy.so VxWin shared object library for vxworks version Xx
and tool Yy (diag or gnu)

acontis technologies GmbH

40 of 50

5.8 VxWin ï Board Support Package for VxWorks 7

5.8.1 Development Host: Copy VxWin platform and BSP

Copy the VxWin platform directory vxwin_common into
%WIND_BASE%\vxworks-7\pkgs_v2\os\psl\intel

Copy the VxWin BSP directory vxwin_generic into
%WIND_BASE%\vxworks-7\pkgs_v2\os\board\intel

5.8.2 Target System Configuration
The following VxWin configuration settings are mandatory:

¶ Assure the VMF is located below physical address 0x20000000
¶ Minimum memory size is 48 Mbyte

See settings located in folder VxWin-TargetConfig, file vxworks7.config:

[Vmf]

"AddressMax"=hex:FF,FF,FF,1F,00,00,00,00

[Rtos]

"MemorySize"=dword: 3000000

5.8.3 Shipped Binary image
You can find a bootable VxWorks 7 binary image (vxWorks.bin) in folder VxWin-
Target

 VxWin

41 of 50

5.8.4 VxWorks Source Build VSB

Create a new VxWorks Source Build Project. It has to be based on the
vxwin_generic BSP, the PENTIUM4 CPU has to be selected. SMP is not supported
and must be unselected (UP support in Libraries).

acontis technologies GmbH

42 of 50

5.8.5 VxWorks Kernel Image Project VIP

Create a new VxWorks Kernel Image Project. It has to be based on the VSB, which
has been created before.

 VxWin

43 of 50

Supported Components:

¶ The VxWin Rtos library

FOLDER_VXWIN_RTOSLIB

¶ Two virtual timers (for sysClk and auxClk):

INCLUDE_VXWIN_VXB_TIMER0/1

¶ One virtual serial channel for the Kernel Shell:

INCLUDE_VXWIN_VXB_VIO_SIO

¶ Virtual network driver: INCLUDE_VXWIN_VXB_VNET_END

¶ BSP Debugging (for extended BSP debugging):

INCLUDE_VXWIN_BSP_DEBUG

All other VxWin components MUST NOT be included/enabled.
The resulting VxWorks image will be located in %VIPDIR%\default\vxWorks.bin

acontis technologies GmbH

44 of 50

5.8.6 Target connection to debug a DKM

At the very first time a ñNew Connectionò has to be created. Properties see below
screenshot.

5.8.7 Debugging a DKM

The VIP has to built with the appropriate Debug Agents included:

After booting the VIP, select the previously created connection (in the example below
its name is ñvxwinò) and press the Connect button.

Select the DKM project. Press the ñTarget Actionsò button and select ñRun/Debug
Kernel Taskéò.

 VxWin

45 of 50

5.9 VxWorks 7 Kernel Image with 512 Mb memory

To build a VxWorks 7 image with 512 Mb, following settings have to be adjusted:

¶ File systemmgr_user.config, located in folder VxWin-TargetConfig:

[Rtos]

"MemorySize"=dword:20000000 ; 512Mb

This entry is only necessary if a system without VT-x is used:

"MemoryStartAddress"=dword:10000000 ; 256Mb

If a system without VT-x is used, these Components settings have to be changed in
the VIP project:

¶ Components in the VIP project:

Set LOCAL_MEM_LOCAL_ADRS to 0xF0000000

Set RAM_LOW_ADRS to 0xF0008000

acontis technologies GmbH

46 of 50

5.10 Multiple Instances
For systems with multi OS configurations, each instance of a VxWorks image must be created
separately with individual memory settings. The memory settings herein must correspond to the
memory settings in the config file. The maximum needed memory size will be calculated by following
formula: size(Image1) + size(Image2) + size(Image3) + ...

Each image could have individual sizes, but the minimum start addresses, etc. depends on the
previous image start address and size. It is possible to leave a gap in memory between each image.

Without gap:

|< - [.config:Upload] RteMemorySize - >|

: :

+--------- +--------------- +---------- +

| image 1 | image 2 | image 3 |

+--------- +--------------- +---------- +

: : : :

|< - s0 - >|< - s1 (size1) - >|< - s2 - >|

Off0 Off1 Off2

Off0: [.config:Upload] RteMemoryStartAddress

Off1: Off0 + s0;

Off2: Off1 + s1;

Off3: ...

Min. RteMemorySize: s0 + s1 + s2 + ...

With gap (between each image):

|< - [.config:Upload] RteMemorySize - >|

: :

+--------- +- +--------------- +- +---------- +

| image 1 |g| ima ge 2 |g| image 3 |

+--------- +- +--------------- +- +---------- +

: : : : : :

|< - s0 - >| |< - s1 (size1) - >| |< - s2 - >|

Off0 Off1 Off2

Off0: [.config:Upload] RteMemoryStartAddress

Off1: Off0 + s0 + g;

Off2: Off1 + s1 + g;

Off3: ...

g: gap of variable size

Min. RteMemorySize: s0 + g + s1 + g + s2 + ...

Remark A: The gap between each image can be of different size.
Remark B: There could be an initial gap before first image and a gap after last image. In those cases,
the RteMemorySize calculation must be adjusted accordingly.

 VxWin

47 of 50

5.10.1 Individual Image Creation
The followings steps are required to get the desired images:

1. Create a Wind River VxWorks 6.x Image project based on VxWin BSP
2. Go to Kernel Configuration
3. Search node memory (default) \ BSP Memory Configuration
4. Adjust value: Physical memory base address with Off0 for 1st image, Off1 for 2nd image, and

so on.
5. Adjust value: Runtime kernel load address with Off0 + 0x8000 for 1st image, Off1 + 0x8000

for 2nd image, and so on.
6. Adjust value: local memory size with s0 for 1st image, s1 for 2nd image, and so on.
7. Compile image

Hint: The steps 4 & 5 must be adjusted for each desired image. Step 6 only, if the size of the images
vary.

acontis technologies GmbH

48 of 50

5.10.2 Further Config File Dependencies
Each configured rtos have a separate entry in the .config file. The offset values (OffX) and the size
values (sX) correspond directly to the rtos specific entries in the .config file.
Hint: Using of the System Manager the values will be automatically adjusted without manual
interference!

1st rtos:

[Rtos]

 ñMemoryStartAddressò=dword:XXXXXXXX : Value of Off0 !

 ñMemorySizeò=dword:XXXXXXXX : Value of s0 !

2nd rtos:

[Rtos1]

 ñMemoryStartAddressò=dword:XXXXXXXX : Value of Off1 !

 ñMemorySizeò=dword:XXXXXXXX : Value of s1 !

3rd rtos:

[Rtos2]

 ñMemoryStartAddressò=dword:XXXXXXXX : Value of Off2 !

 ñMemorySizeò=dword:XXXXXXXX : Value of s2 !

 VxWin

49 of 50

6 Built-in tools and utilities

6.1 RtosService

RtosService.exe is needed when using the RtosLib.lib.

If you look at the default General.config file, you will see that RtosService.exe is

automatically launched.

RtosService.exe starts the communication between Windows and WinCE. Also it

starts the time synchronisation between Windows and WinCE.

6.2 Boot Line for VxWorks

When VxWorks is booted up in an embedded system, among the first things it

does is read a line of text from a pre-defined location in RAM memory1. This so-

called boot line2 contains parameters that VxWorks uses to dynamically

characterize itself during its boot-up phase. Boot-line parameters convey

information such as: network addresses, boot device designation, password, and

start-up script identifier.

When VxWin is started, it retrieves boot-line parameters from the boot line in the

VxWin configuration file. By this means, VxWin users can influence, upon each

startup, how VxWorks boots, without having to generate a new image.

1 The boot line is stored in the variable sysBootLine as defined in the VxWorks sysLib.c

library. The boot line is a simple ASCII text-string.

2 "Boot line," a VxWorks term, is described in detail in Wind River Systems

documentation.

acontis technologies GmbH

50 of 50

7 Version History
A general version history containing information about new features, migration

hints and improvements can be found in the release notes file

ñReleaseHistory.txtò.

